

Exercises to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 4 submission: Tuesday, November 21 2017, 2 pm postbox of Vincent Preiß (basement of E2.5)

Exercise 1 (20 points). For $1 \le p \le \infty$ we consider the Banach spaces

$$\ell^p := \left\{ (a_n)_{n \in \mathbb{N}} \middle| a_n \in \mathbb{C}, \|(a_n)\|_p < \infty \right\}$$

where $\|(a_n)\|_p := \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}} \quad 1 \le p < \infty$
 $\|(a_n)\|_{\infty} := \sup_{n \in \mathbb{N}} |a_n| \qquad p = \infty$

- (a) Let 1 < p, q < ∞ with ¹/_p + ¹/_q = 1. Show that the dual space of l^p is isometrically isomorphic to l^q. *Hint:* Use Hölder's inequality ||(a_n)(b_n)||₁ ≤ ||(a_n)||_p||(b_n)||_q, where the product (a_n)_{n∈ℕ}(b_n)_{n∈ℕ} is defined by (a_nb_n)_{n∈ℕ}.
- (b) Let $1 \le p < q \le \infty$. Show that $\ell^p \subsetneq \ell^q$ and $||(a_n)||_q \le ||(a_n)||_p$.
- (c) Let $(a_n) \in \ell^p$ for all $1 \le p < \infty$. Show that $\lim_{q \to \infty} ||(a_n)||_q = ||(a_n)||_{\infty}$.
- (d) What's going wrong if we try to make ℓ^p for 0 a normed space?

Exercise 2 (10 points). Show, that the unit ball of the Banach space $(c_0, \|\cdot\|_{\infty}), \{(a_n) \in c_0 \mid \|(a_n)\|_{\infty} \leq 1\}$, has no extreme points.

Exercise 3 (10 points). We consider the space $(c, \|\cdot\|_{\infty})$, where:

$$c := \{(a_n)_{n \in \mathbb{N}} \mid a_n \in \mathbb{C}, \lim_{n \to \infty} a_n \text{ exists}\}, \qquad \|(a_n)\|_{\infty} := \sup_{n \in \mathbb{N}} |a_n|$$

Show that the dual space of c is ℓ^1 . (So $c_0 \subsetneq c$ and $c'_o = c'$.) For this, show first, that the mapping $F: c \to \mathbb{C}$, $(a_n) \mapsto \lim_{n \to \infty} a_n$ is continuous and linear.

please turn the page

Additional exercise [10 extra points]:

(i) Let $T: X \to Y$ be a linear mapping between vector spaces. Show that the pre-image $T^{-1}(A)$ of convex sets $A \subseteq Y$ is again convex.

For 0 we define now the vector space

$$L^{p} := \{ f : [0,1] \to \mathbb{C} \mid f \text{ Borel-measurable and } \int_{[0,1]} |f(x)|^{p} d\lambda(x) < \infty \},$$

where λ is the usual Borel-measure on \mathbb{R} restricted to [0,1] and we identify as usual functions f_1 and f_2 if they only differ on zero-sets.

- (ii) Show that $d(f,g) := \int_{[0,1]} |f(x) g(x)|^p d\lambda(x)$ defines a metric on L^p .
- (iii) Use for given $n \in \mathbb{N}$ and $0 = x_0 < x_1 < \ldots < x_n = 1$ the convex combination

$$f = \frac{1}{n} \left(nf \cdot \mathbb{1}_{[x_0, x_1]} + nf \cdot \mathbb{1}_{[x_1, x_2]} + \ldots + nf \cdot \mathbb{1}_{[x_{n-1}, x_n]} \right)$$

to show that for every $\varepsilon > 0$ we can write f as a convex combination of elements $g_1, \ldots, g_n \in L^p$ with $d(0, g_i) < \varepsilon$ for all $1 \le i \le n$. This shows, that (L^p, d) is not a locally-convex vector space.

- (iv) Deduce that L^p is the only open, convex set of the metric space (L^p, d) containing 0.
- (v) Show that $(L^p, d)' = \{0\}$, i.e. there is no non-trivial functional on (L^p, d) .
- (vi) Prove, that Theorem 2.7 from the lecture does not hold for a general (metric) vector spaces: Not every (continuous) linear functional defined on a closed subspace of a (metric) vector space has a continuous, linear extension to the whole space.