

Exercises to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 5
submission: Tuesday, November 28 2017, 2 pm postbox of Vincent Preiß (basement of E2.5)

Exercise 1 (10 points). Show that there is a function $g \in (C([0, 1]), \|\cdot\|_{\infty})$ which is not differentiable in every point of $[0, \frac{1}{2}]$. For this, show that the sets

$$F_n := \left\{ f \in \mathcal{C}([0,1]) \mid \exists x \in [0,\frac{1}{2}] : \sup_{0 < h < \frac{1}{2}} \frac{|f(x+h) - f(x)|}{h} \le n \right\}$$

are closed for all $n \in \mathbb{N}$ and contain no open sets.

- Exercise 2 (10 points). (a) Prove Corollary 4.3 of the lecture under usage of Baire's theorem: There is no real or complex Banach space of countably infinite vector space dimension.
 - (b) Show that the vector space of all polynomials with complex-valued coefficients is not complete with respect to no norm.

Exercise 3 (10 points). Prove Corollary 4.5 of the lecture (under usage of the principle of uniform boundedness): If E is a normed space and $M \subseteq E$ a subset, such that for every $f \in E'$ the set f(M) is bounded, then we already have that the set M is bounded.

Exercise 4 (10 points). We consider f, the space of finite sequences in \mathbb{C} (see sheet 2) as a subspace of ℓ^{∞} . Let $T : f \to f$ be given by:

 $T(a_1, a_2, a_3, \dots, a_n, \dots) := (a_1, 2a_2, 3a_3, \dots, na_n, \dots)$

- (a) Show that $f \subseteq \ell^{\infty}$ is not closed (so not complete).
- (b) Show that T is not continuous (but linear).
- (c) Show that T is a pointwise limit of continuous, linear mappings $T_n: f \to f$.

So the Banach-Steinhaus theorem (Cor. 4.6 of the lecture) is wrong if X is no Banach space.