

Exercises to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 9

submission: Tuesday, January 2 2018, 2 pm postbox of Vincent Preiß (basement of E2.5)

Exercise 1 (20^{*} points). The one-sided shift $S : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ is defined by $Se_n := e_{n+1}$, where $(e_n)_{n \in \mathbb{N}}$ is the standard ONB of $\ell^2(\mathbb{N})$.

- (a) Compute S^* and show that S is an isometry, but not a unitary. (This is possible only in the infinite dimensional case.)
- (b) Show that $S \lambda$ is invertible for $|\lambda| > 1$.
- (c) Show that S has no eigenvalues. So there is no $\lambda \in \mathbb{C}$ and $x \in \ell^2(\mathbb{N})$ with $x \neq 0$ and $Sx = \lambda x$.
- (d) Show that λ is an eigenvalue for S^* whenever $|\lambda| < 1$.
- (e) Show that $\operatorname{Sp}(S) = \{\lambda \in \mathbb{C} \mid |\lambda| \le 1\}.$

Exercise 2 (20* points). Let (X, d) be a metric space. We say that in (X, d) the balls are round if for $x_1, x_2 \in X$ and $r_1, r_2 > 0$ with $d(x_1, x_2) = r_1 + r_2$ there is always exactly one $x_0 \in X$ lying in the intersection of the closed balls $\overline{B(x_1, r_1)}$ and $\overline{B(x_2, r_2)}$. So round balls of this radii intersect in exactly one point.

Santa Claus wants to put up a christmas tree but cannot deside where to buy the glitter balls in order to decorate the tree. He is balancing between *Banach's Beautiful Ball Deliveries* and *Hilbert's Ho-Ho-Homeshop*. Santa wants to assure that his grandchilden do not hurt themselves at the tree decoration, so he prefers round balls.

- (a) Can Santa order the glitter balls wherever he wants (proof or counterexample)?
- (b) Are Santa's grandchildren safe (at least from this perspective) if he chooses *Hilbert's Ho-Homeshop* (proof or counterexample)?
- (c) Draw a christmas tree with typical glitter balls from *Banach's Beautiful Ball Deliveries* and another tree with typical glitter balls from *Hilbert's Ho-Ho-Homeshop*, both with lots of nice christmas decorations.

Hint: Use Theorem 5.10 from the lecture for (b) and coloured pencils for (c).

We wish all students a merry christmas, nice holidays and a happy new year.