

Exercises to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 10

submission: Tuesday, January 9 2018, 2 pm postbox of Vincent Preiß (basement of E2.5)

Exercise 1 (10 points). let H be a Hilbert space. Show that for an operator $V \in \mathcal{L}(H)$ the following are equivalent:

- (i) V is a partial isometry, i.e. $VV^*V = V$.
- (ii) V^*V is an orthogonal projection (see Def. 7.9 and sheet 7).
- (iii) VV^* is an orthogonal projection.
- (iv) There is a closed subspace $K \subseteq H$, s.t. $V|_K : K \to H$ is isometric (i.e. ||Vx|| = ||x|| for all $x \in K$) and $V|_{K^{\perp}} = 0$.

Exercise 2 (20 points). We consider

$$\ell^{1}(\mathbb{Z}) := \{ (\alpha_{n})_{n \in \mathbb{Z}} \mid \sum_{n \in \mathbb{Z}} |\alpha_{n}| < \infty \}, \qquad \| (\alpha_{n})_{n \in \mathbb{Z}} \|_{1} := \sum_{n \in \mathbb{Z}} |\alpha_{n}|$$

with the *convolution*:

$$(\alpha_n)_{n\in\mathbb{Z}}*(\beta_n)_{n\in\mathbb{Z}}:=(\gamma_n)_{n\in\mathbb{Z}}, \quad \text{where } \gamma_n:=\sum_{k\in\mathbb{Z}}\alpha_k\beta_{n-k}$$

- (a) Show that $\ell^1(\mathbb{Z})$ with this multiplication is a commutative Banach algebra.
- (b) Show that every character of $\ell^1(\mathbb{Z})$ is of the form $\varphi_z : A \to \mathbb{C}$, with $\varphi_z((\alpha_n)_{n \in \mathbb{N}}) := \sum_{n \in \mathbb{Z}} \alpha_n z^n$ for a suitale $z \in \mathbb{T} := \{z \in \mathbb{C} \mid |z| = 1\}$. So we identify $\operatorname{Spec}(A) \cong \mathbb{T}$ as sets (we can even identify them as topological spaces).

Exercise 3 (10 points). A C^* -algebra is called *simple*, if it contains no proper ideals (if $I \subseteq A$ is a closed, two-sided ideal, then it holds I = 0 or I = A). Show that $M_n(\mathbb{C})$ is simple. Deduce that $\text{Spec}(M_n(\mathbb{C}))$ is empty.

While the set of complex homomorphisms for commutative Banach algebras carries all informations about the algebra, this is in general not true for non-commutative ones.