

Exercises to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 11

submission: Tuesday, December 16 2017, 2 pm postbox of Vincent Preiß (basement of E2.5)

Exercise 1 (15 points). Let A be a unital C^* -algebra. Show:

- (a) If $x \in A$ is invertible, then Sp $x^{-1} = \{\lambda^{-1} \mid \lambda \in \text{Sp } x\}$.
- (b) If u ∈ A is unitary (i.e. u*u = uu* = 1), then Sp u ⊆ T ⊆ C, where T as on sheet 10 is the unit circle in C.
 Show herefore that ||u|| = ||u*|| = 1 and use (a).

(c) If $x \in A$ is selfadjoint, then Sp $x \subseteq \mathbb{R}$.

Show herefore that every spectral value λ from Sp x induces a spectral value of the unitary lift $u := e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$. Herefore, the element $z := \sum_{n=1}^{\infty} \frac{i^n (\lambda - x)^{n-1}}{n!}$ is helpful. Finally, use (b).

Exercise 2 (10 points). let $A \in \mathcal{B}(H)$. Show that A is positive if and only if $\langle Ax, x \rangle \geq 0$ for all $x \in H$.

Hint: Show that $A - \lambda$ is bounded from below and surjective for $\lambda \notin [0, \infty)$.

Exercise 3 (15 points). Let *H* be a Hilbert space and $A \in \mathcal{B}(H)$. We define $|A| := \sqrt{A^*A}$. (Why is this well-defined?)

- (a) Show that $\ker|A| = \ker(A)$ and that the map $\Psi : \operatorname{im}|A| \to \operatorname{im}(A), |A|\xi \to A\xi$ is well-defined and isometric. So it has an isometric extention $\Psi_0 : \operatorname{im}|A| \to \operatorname{im}(A)$.
- (b) We define:

$$V = \begin{cases} \Psi_0, & \text{on } \overline{\operatorname{im}|A|} \\ 0, & \text{on } \overline{\operatorname{im}|A|}^{\perp} = \ker(A) \end{cases}$$

Show that V is a *partial isometry*, i.e. it holds $V = VV^*V$. Show further that V^*V is the projection onto $(\ker(A))^{\perp}$ and VV^* the projection onto $\overline{\operatorname{im}(A)}$.

- (c) Show that we can write A as A = V|A| and that the partial isometry V is uniquely defined by A = V|A| and ker(V) = ker(A). This decomposition of A is called *polar* decomposition (analogously to the polar decomposition in \mathbb{C}).
- (d) Show that V is unitary (so $V^*V = VV^* = 1$), if A is invertible.