

Exercises to the lecture 'Functional Analysis' Winter term 2017/2018

sheet 12

submission: Tuesday, January 23, 2018, 2 pm postbox of Vincent Preiß (basement of E2.5)

Exercise 1 (20 points). Let $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ be a bounded sequence in \mathbb{C} and $M_{\alpha} : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be defined by $(x_n) \mapsto (\alpha_n x_n)$.

- (a) Show that M_{α} is normal, that $Sp(\alpha) = \overline{\{\alpha_n \mid n \in \mathbb{N}\}}$ and that $f(M_{\alpha}) = M_{f(\alpha)}$ for every continuous function f on $Sp(M_{\alpha})$. Here $f(\alpha) := (f(\alpha_n))_{n \in \mathbb{N}}$.
- (b) Characterize those α , for which M_{α} is compact.

Exercise 2 (10 points). Finish the proof of Proposition 10.27 of the lecture:

- (a) Show that if $x \in A$ is positive, there is a positive element $y \in A$, such that $y^2 = x$ using functional calculus.
- (b) Show that if $y_1, y_2 \in C^*(x, 1) \subseteq A$ are positive and such that $y_1^2 = y_2^2 = x$, they may be written as $f_1(x) = y_1$ and $f_2(x) = y_2$ for some continuous functions f_1 and f_2 . Prove $f_1 = f_2$.
- (c) Let $y \in A$ be positive such that $y^2 = x$. Use $C^*(x, 1) \subseteq C^*(y, 1) \cong C(Sp(y))$ and Stone-Weierstraß to show that $y \in C^*(x, 1)$.
- (d) Conclude that every positive element in a unital C^* -algebra A has a unique positive square root. In particular, every positive operator in B(H) has a unique positive square root.

please turn the page

Let H be a Hilbert space and let $(T_n)_{n \in \mathbb{N}}$ be a sequence of operators in B(H). Let $T \in B(H)$. We define the following three operator topologies.

- (i) We say that $(T_n)_{n\in\mathbb{N}}$ converges in norm to T, if $||T_n T|| \to 0$ for $n \to \infty$.
- (ii) We say that $(T_n)_{n\in\mathbb{N}}$ converges strongly to T, if $||T_n\xi T\xi|| \to 0$ for $n \to \infty$ and all $\xi \in H$.
- (iii) We say that $(T_n)_{n \in \mathbb{N}}$ converges weakly to T, if $\langle (T_n T)\xi, \eta \rangle \to 0$ for $n \to \infty$ and all $\xi, \eta \in H$.

Exercise 3 (10 points). We compare the three operator topologies.

- (a) Prove that convergence in norm implies strong convergence, and that strong convergence implies weak convergence.
- (b) For which of the three operator topologies, the norm is continuous? (Investigate the sequence of projections $T_n := P_n$ projecting onto *n*-th ONB vector.)
- (c) For which of the three operator topologies, the involution is continuous? (Investigate $T_n := (S^*)^n$, where S is the unilateral shift.)
- (d) Show for the three topologies: If $U \in B(H)$ and if $T_n \to T$, then $UT_n \to UT$ and $T_n U \to TU$, for $n \to \infty$.

Special exercise (100 Euro^{*}). Prove or disprove: There is a number $n \in \mathbb{N}$, a Hilbert space H and selfadjoint operators $u_{ij} \in B(H)$, $i, j \in \{1, \ldots, n\}$ such that

- (i) $\sum_{k_1,k_2=1}^n u_{i_1k_1} u_{i_2k_2} u_{j_1k_1} u_{j_2k_2} = \sum_{k_1,k_2=1}^n u_{k_1i_1} u_{k_2i_2} u_{k_1j_1} u_{k_2j_2} = \delta_{i_1j_1} \delta_{i_2j_2}$ for all i_1, i_2, j_1, j_2
- (ii) and there are i, j, k, l such that $u_{ij}u_{kl} \neq u_{kl}u_{ij}$.

*to be split in case there are several correct solutions