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Problem 1. Let ) # Q C C be open and consider f € O(2). Prove that
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where u := Re(f) : @ = R and v := Im(f) : Q@ — R, as usual.

Use this together with the real inverse function theorem in order to prove that f is injective
in an open neighborhood of any given point zo € Q if and only if f/(z) # 0 holds.

Problem 2. Let us denote by T the set of all holomorphic functions f : D — C that
satisfy f(0) =0 and f’(0) = 1 and that have no zeros on D\{0}.

(i) Let f € T be given. Prove that there exists a unique function g € O(ID), such that
g(2)* = f(z*) forallzeD and  ¢'(0)=1.
We call g the square root transform of f.

Hint: Establish first the existence of a function f € O(D) without zeros and with
the property that f(22) = 22f(z) holds for all z € . Finally, show that f admits a
holomorphic square root, i.e., there is a function § € O(D) that satisfies f(z) = §(z)?
for all z € D. Use this to construct the desired square root transform g of f.

(ii) Prove that the square root transform ¢ of any f € T is an odd function (i.e., it
satisfies g(—z) = —g(z) for all z € D) and belongs to T.



