

Assignments for the lecture Complex Analysis II Winter term 2017/2018

Assignment 2A

for the tutorial on Tuesday, November 21, 4:15 pm (in Seminar Room 10)

Our goal is the proof of the following theorem, which strengthens the assertion of the Bieberbach conjecture for functions in S that have convex range.

Theorem. Let $g \in S$ be given and consider its power series expansion

$$g(z) = \sum_{n=1}^{\infty} b_n z^n$$
 for $z \in \mathbb{D}$.

If the image $g(\mathbb{D})$ is convex, then the coefficients of g satisfy $|b_n| \leq 1$ for all $n \in \mathbb{N}$.

Recall that an arbitrary set $C \subseteq \mathbb{C}$ is said to be *convex*, if $tz_1 + (1-t)z_2 \in C$ holds for any choice of points $z_1, z_2 \in C$ and for each $t \in [0, 1]$.

Problem 1. Let $f, g : \mathbb{D} \to \mathbb{C}$ be two holomorphic functions that satisfy f(0) = 0 and g(0) = 0. We consider their power series expansions

$$f(z) = \sum_{n=1}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ for $z \in \mathbb{D}$.

Prove the following assertions:

(i) If g is schlicht and $f(\mathbb{D}) \subseteq g(\mathbb{D})$ holds, then $|a_1| \leq |b_1|$.

Hint: Apply the Schwarz lemma.

(ii) If we suppose in addition to the assumptions made in (i) that $g(\mathbb{D})$ is convex, then $|a_m| \leq |b_1|$ holds for all $m \in \mathbb{N}$.

Hint: For fixed $m \in \mathbb{N}$, put $\zeta := \exp(\frac{2\pi i}{m})$ and consider the function

$$h: \mathbb{D} \to \mathbb{C}, \ re^{i\theta} \mapsto \frac{1}{m} \sum_{k=1}^{m} f(\zeta^k r^{\frac{1}{m}} e^{i\frac{\theta}{m}}).$$

Show that h is well-defined and holomorphic and compute its power series expansion.

Problem 2.

- (i) Prove the theorem with the help of the results that were obtained in Problem 1.
- (ii) Are the inequalities given in the theorem sharp, i.e., is there a function $g \in \mathcal{S}$ with convex image $g(\mathbb{D})$, such that $|b_n| = 1$ holds for all $n \in \mathbb{N}$?