

Assignments for the lecture Complex Analysis II Winter term 2017/2018

Assignment 3A

for the tutorial on Tuesday, December 5, 4:15 pm (in Seminar Room 10)

Problem 1. Prove Lemma 3.3 of the lecture:

Let $(f_n)_{n=1}^{\infty}$ be a sequence of schlicht holomorphic functions $f_n : \mathbb{D} \to \mathbb{C}$ that converges compactly (i.e., uniformly on compact subsets of \mathbb{D}) to some schlicht holomorphic function $f : \mathbb{D} \to \mathbb{C}$. Then, for any given compact set

$$K \subset f(\mathbb{D}),$$

there is some $N \in \mathbb{N}$, such that

 $K \subset f_n(\mathbb{D})$ for all $n \ge N$.

Hint: Use Rouché's theorem.

Problem 2. Prove part (ii) of Theorem 3.4 of the lecture:

Consider the situation (*) that was described in Chapter 3, i.e., suppose that

- $(G_n)_{n=1}^{\infty}$ is a sequence of simply connected domains $G_n \subsetneq \mathbb{C}$ with $0 \in G_n$;
- $(f_n)_{n=1}^{\infty}$ is the corresponding sequence of biholomorphic maps $f_n : \mathbb{D} \to G_n$ satisfying $f_n(0) = 0$ and $f'_n(0) > 0$.

Then $(f_n)_{n=1}^{\infty}$ converges compactly on \mathbb{D} to 0, if and only if no subsequence of $(G_n)_{n=1}^{\infty}$ has a kernel.

Hint: Use the Schwarz lemma and Theorem 2.8.