

Assignments for the lecture Complex Analysis II Winter term 2017/2018

Assignment 4A

for the tutorial on Tuesday, December 12 (!), 4:15 pm (in Seminar Room 10)

Throughout the following, we denote by Δ_r for any r > 0 the subset of \mathbb{C} that is given by

$$\Delta_r := \{ z \in \mathbb{C} \mid |z| > r \}.$$

Problem 1. In the lecture, more precisely in Definition 2.1, we have introduced the two subsets Σ and Σ' of $\mathcal{O}(\Delta_1)$. Recall that $\Sigma' \subsetneq \Sigma$ and that each $g \in \Sigma$ admits a Laurent expansion around ∞ of the form

$$g(z) = z + \sum_{n=0}^{\infty} b_n z^{-n}.$$

Now, we define $\Sigma_0 \subset \Sigma$ and $\Sigma'_0 \subset \Sigma'$ as the respective subsets consisting of those functions g for which $b_0 = 0$ holds. Let $g \in \Sigma_0$ be given.

(i) Use Grönwall's Area Theorem in order to show that

$$|g(z) - z| \le 1$$
 for all $z \in \Delta_2$

- (ii) Deduce from (i) with the help of Rouché's Theorem that $\Delta_3 \subseteq g(\Delta_2)$.
- (iii) Prove that if any $x \in [-3,3]$ is given, then

$$|g(z) - x| \ge \frac{3}{10}|z|$$
 for all $z \in \Delta_6$.

Problem 2. Let $K \subset \mathbb{H}$ be a compact \mathbb{H} -hull.

(i) Suppose that $K \subseteq \overline{D(0,r)}$. Prove that the restriction of g_K to $\mathbb{H} \cap \Delta_r$ extends by reflection to a schlicht holomorphic function $\tilde{g}_K : \Delta_r \to \mathbb{C}$ satisfying

$$\lim_{|z|\to\infty} (\tilde{g}_K(z) - z) = 0.$$

Deduce that the rescaled function $z \mapsto \frac{1}{r} \tilde{g}_K(rz)$ belongs to Σ_0 ; use this in order to show that $\Delta_{3r} \subseteq \tilde{g}_K(\Delta_{2r})$ and that for each $x \in [-3r, 3r]$

$$|\tilde{g}_K(z) - x| \ge \frac{3}{10}|z|$$
 for all $z \in \Delta_{6r}$.

(ii) Prove that

$$|g_K(z) - z| \le 5 \operatorname{rad}(K)$$
 for all $z \in \mathbb{H} \setminus K$.