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Problem 6 (Tails of Normal Distribution). Let g ∼ N (0, 1). Prove that for all t > 0,(1
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Problem 7 (Exercises from lecture).

1. Proposition 2.1: Prove that property P5 is equivalent to P1 - P4.
Hint: Prove that P3⇒ P5 and P5⇒ P1.

2. Prove the general Hoeffding inequality in Theorem 2.3.

3. Prove Khintchine’s inequality in Theorem 2.5.

Problem 8 (Chernoff’s inequality). Let Xi be independent Bernoulli random variables
with parameters pi, i.e. P(Xi = 1) = 1 − P(Xi = 0) = pi. Set SN =

∑N
i=1Xi and denote

by µ = ESN .

1. (Large deviations) Prove that for any t > µ,
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and for any t < µ,
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2. (Small deviations) Deduce that for δ ∈ (0, 1)
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where c > 0 is an absolute constant.
Hint: Apply part 1 for t = (1± δ)µ and analyze the bounds for small δ.



Application to degree of random graphs
We give an application of Chernoff’s inequality to random graphs. We consider the classical
Erdös-Rényi model G(n, p), which is constructed on a set of n vertices by connecting every
pair of distinct vertices independently with probability p. In applications, this model
appears as the simplest stochastic model for large, real-world, networks.

Problem 9. Consider an Erdös-Rényi random graph G(n, p). For any i = 1, . . . , n, let
Xi be the degree of the vertex vi in the graph, i.e. the number of the edges incident to vi.

1. Prove that EXi = (n− 1)p =: d.

We say that a graph is regular if all vertices have equal degrees. We will show that
relatively dense graphs, those where d & log n, are almost regular with high probability;
i.e. the degrees of all vertices are approximately equal to d with high probability.

2. Assume that d ≥ C log n. Prove that if C is sufficiently large then with high proba-
bility (say, 0.9), all the vertices have degree between 0.9d and 1.1d.
Hint: Use Chernoff’s inequality.

We consider now sparse graphs where d = O(log n).

3. Prove that with high probability (say, 0.9), all the vertices have degree of order
log n.
Hint: Use Chernoff’s inequality.

We will see that the situation changes for very sparse graphs where d = O(1).

4. Prove that with high probability (say, 0.9), all the vertices have degree

O
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