

High Dimensional Probability with Applications to Big Data Sciences

Summer term 2020

Assignment 2

Due: Monday, May 25, 2020

Problem 6 (Tails of Normal Distribution). Let $g \sim \mathcal{N}(0, 1)$. Prove that for all t > 0,

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le \mathbb{P}(g \ge t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.$$

Problem 7 (Exercises from lecture).

- 1. Proposition 2.1: Prove that property P5 is equivalent to P1 P4. Hint: Prove that $P3 \Rightarrow P5$ and $P5 \Rightarrow P1$.
- 2. Prove the general Hoeffding inequality in Theorem 2.3.
- 3. Prove Khintchine's inequality in Theorem 2.5.

Problem 8 (Chernoff's inequality). Let X_i be independent Bernoulli random variables with parameters p_i , i.e. $\mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = 0) = p_i$. Set $S_N = \sum_{i=1}^N X_i$ and denote by $\mu = \mathbb{E}S_N$.

1. (Large deviations) Prove that for any $t > \mu$,

$$\mathbb{P}(S_N \ge t) \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t$$

and for any $t < \mu$,

$$\mathbb{P}(S_N \le t) \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t.$$

2. (Small deviations) Deduce that for $\delta \in (0, 1)$

$$\mathbb{P}(|S_N - \mu| \ge \delta\mu) \le 2e^{-c\mu\delta^2},$$

where c > 0 is an absolute constant.

Hint: Apply part 1 for $t = (1 \pm \delta)\mu$ and analyze the bounds for small δ .

Application to degree of random graphs

We give an application of Chernoff's inequality to random graphs. We consider the classical Erdös-Rényi model G(n, p), which is constructed on a set of n vertices by connecting every pair of *distinct* vertices independently with probability p. In applications, this model appears as the simplest stochastic model for large, real-world, networks.

Problem 9. Consider an Erdös-Rényi random graph G(n, p). For any i = 1, ..., n, let X_i be the *degree* of the vertex v_i in the graph, i.e. the number of the edges incident to v_i .

1. Prove that $\mathbb{E}X_i = (n-1)p =: d$.

We say that a graph is regular if all vertices have equal degrees. We will show that relatively *dense graphs*, those where $d \ge \log n$, are almost regular with high probability; i.e. the degrees of all vertices are approximately equal to d with high probability.

2. Assume that $d \ge C \log n$. Prove that if C is sufficiently large then with high probability (say, 0.9), all the vertices have degree between 0.9d and 1.1d. *Hint:* Use Chernoff's inequality.

We consider now sparse graphs where $d = \mathcal{O}(\log n)$.

 Prove that with high probability (say, 0.9), all the vertices have degree of order log n. Hint: Use Chernoff's inequality.

We will see that the situation changes for very sparse graphs where $d = \mathcal{O}(1)$.

4. Prove that with high probability (say, 0.9), all the vertices have degree

$$\mathcal{O}\bigg(\frac{\log n}{\log(\log n)}\bigg).$$