UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Dr. Marwa Banna

High Dimensional Probability with Applications to Big Data Sciences

Summer term 2020

Assignment 5

Due: Wednesday, July 15, 2020

Problem 18 (Functions of matrices).

Check the following properties for $n \times n$ symmetric matrices X and Y.

- 1. $||X|| \le t$ if and only if $-tI \le X \le tI$.
- 2. If $f: \mathbb{R} \to \mathbb{R}$ is an increasing function, $X \preceq Y$, and X and Y commute, then $f(X) \preceq f(Y)$.
- 3. Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions. If $f(x) \leq g(x)$ for all $x \in \mathbb{R}$ satisfying $|x| \leq K$, then $f(X) \leq g(X)$ for all X satisfying $||X|| \leq K$.

Problem 19 (Matrix moment generating function).

Let X be an $n \times n$ symmetric random matrix with mean 0 such that $||X|| \leq 1$ almost surely. Prove the following bound:

$$\mathbb{E} \exp(\lambda X) \leq \exp(g(\lambda)\mathbb{E}X^2)$$
 where $g(\lambda) = \frac{\lambda^2/2}{1 - \lambda/3}$,

provided that $0 \le \lambda < 3$.

Hint: Prove that $e^z \le 1 + z + \frac{1}{1-z/3} \cdot \frac{z^2}{2}$ for |z| < 3.

Problem 20 (Norm of the sum of independent random matrices).

Let X_1, \ldots, X_N be independent, mean zero, $d \times d$ symmetric random matrices, such that $||X_i|| \leq K$ almost surely for all i. Deduce from Matrix Bernstein's inequality that

$$\mathbb{E}\left\|\sum_{i=1}^{N} X_i\right\| \lesssim \left\|\sum_{i=1}^{N} \mathbb{E} X_i^2\right\|^{1/2} \sqrt{\log d} + K \log d.$$

Problem 21 (Matrix Hoeffding Inequality).

Let $\varepsilon_1, \ldots, \varepsilon_N$ be i.i.d. standard Gaussian random variables Let A_1, \ldots, A_N be $d \times d$ symmetric deterministic matrices. Prove that for any t > 0,

$$\mathbb{P}\Big(\lambda_{\max}\big(\sum_{i=1}^{N}\varepsilon_{i}A_{i}\big) > t\Big) \leq d\exp\bigg(-\frac{t^{2}}{2\sigma^{2}}\bigg),$$

where $\sigma^2 = \|\sum_{i=1}^N A_i^2\|$.

Problem 22 (Covariance estimation for general distributions).

Let X be a mean-zero random vector in \mathbb{R}^n with covariance matrix $\Sigma = \mathbb{E}XX^T$. Let $m \in \mathbb{N}$. Let X_1, \ldots, X_m be independent copies of X and consider the sample covariance matrix

$$\Sigma_m = \frac{1}{m} \sum_{i=1}^m X_i X_i^T.$$

1. Prove that if, for some K>1, $\|X\|_2^2\leq K^2\mathbb{E}\|X\|_2^2$ almost surely, then there exists a positive constant C such that

$$\mathbb{E}\|\Sigma_m - \Sigma\| \le C\left(\sqrt{\frac{K^2 n \log n}{m}} + \frac{K^2 n \log n}{m}\right) \|\Sigma\|.$$

2. Comment and compare with the sub-Gaussian case.