(over C)	vector space	algebra	(unital)	*–algebra	pre-C*–algebra
algebraic	Я	product $(a, b) \mapsto ab$	$\exists (!)1 \text{ such that}$ 1 a = a = a 1	involution *: $a \mapsto a^*$	[Tentative: $\mathcal{A} \subset \mathcal{L}^{a}(H)$
		bilinear associative	$(1^* = 1^*1 = 1 \leftarrow)$	self-inverse anti-linear anti-multiplicative	(H a pre-Hilbert space)]
normed	•	submultiplicative $ ab \le a b $	$\ 1\ = 1$ (\leftarrow only gives $\ 1\ \ge 1$)	isometric $ a^* = a $	$C^*-\text{norm:}$ $ a^*a = a ^2$ $(\Rightarrow a^* \ge a \forall a \Rightarrow a^* = a ,$ similarly, $0 \ne 1 = 1^*1 = 1 ^2$
Banach	complete	Banach algebra	unital Banach algebra	Banach *–algebra	$C^*-\text{algebra}$

Fundamental structure theorems on C^* -algebras:

- Every commutative C^* -algebra \mathcal{A} is isomorphic to $C_0(\Omega)$ for a (unique) locally compact space Ω .
 - $[\Omega = \{\tau : \mathcal{A} \xrightarrow[\text{multiplicative}]{\text{multiplicative}} \mathbb{C}\} \text{ is a subset of the dual of } \mathcal{A}, \text{ which is locally compact with respect to the weak* topology. The isomorphism } \mathcal{A} \to C_0(\Omega) \text{ is given by } a \mapsto (\widehat{a}: \tau \mapsto \tau(a)).]$

 $[\mathcal{A} \text{ is unital if and only if } \Omega \text{ is compact. Many proofs require that } \mathcal{A} \text{ is unitalized } \mathcal{A} \subset \widetilde{\mathcal{A}} := \mathcal{A} \oplus \widetilde{1}\mathbb{C}.]$

• Every C^* -algebra \mathcal{A} is isomorphic to a norm-closed *-subalgebra of some $\mathcal{B}(H)$.

[For every element $a \in \mathcal{A}$ there exists a *state* φ such that $\varphi(a^*a) = ||a||^2$, so that the *GNS-representation* for φ sends *a* to an operator with the same norm. It follows that the direct sum over all GNS-representations of states (called *universal representation*) is *faithful*.]

Note! The first structure theorem is much more useful and fundamental than the second, because the isomorphism is **onto** a canonical object. (For every function $f \in C_0(\Omega)$ there is a unique element $a \in \mathcal{A}$ such that $\widehat{a} = f$. So, whatever you can do with function, you can do also in your commutative C^* -algebra, and theorems about the algebra structure of $C_0(\Omega)$ become theorems about \mathcal{A} .) It becomes most important when applied to suitable commutative subalgebras of general C^* -algebras. For instance, if *a* is a **normal** ($a^*a = aa^*$) element of $\mathcal{A} \ni \mathbf{1}$, then the C^* -subalgebra $C^*(a, \mathbf{1})$ of \mathcal{A} **generated** by *a* and $\mathbf{1}$ is isomorphic to $C(\sigma(a))$ where $\sigma(a)$ is the *spectrum* of *a* (see below). So for every continuous function on the (compact) subset $\sigma(a)$ of \mathbb{C} , it makes sense to speak about f(a) (the unique element in $C^*(a, \mathbf{1}) \subset \mathcal{A}$ such that $\widehat{f(a)} = f$). The isomorphism $C(\sigma(a)) \to C^*(a, \mathbf{1}) \subset \mathcal{A}$ is known as (**continuous**) **Spectral calculus** at *a*. Frequently, also if *a* is not normal, one gets important information about *a* by looking at the normal element a^*a of \mathcal{A} .

The isomorphism in the second structure theorem is (usually) **not** onto the object $\mathcal{B}(H)$. That leaves the (sometimes quite tricky) problem to decide if an element of $\mathcal{B}(H)$ belongs to the C^* -algebra or not. (Operations you can do in $\mathcal{B}(H)$, like, for instance, taking supremum of two (or more) positive elements, may lead you out of the C^* -algebra.) Also, the object $\mathcal{B}(H)$ is far from being canonical or "nice". For instance, the *universal representation* constructed in the proof is nonseparable, whenever dim $\mathcal{A} \geq 2$.

A useful tool. In a unital C^* -algebra (Banach algebra) \mathcal{A} , the *Neumann series* $\sum_{n=0}^{\infty} a^n$ exists whenever ||a|| < 1 and, of course, equals $(1 - a)^{-1}$. (Exercise: Use this to show that the set $inv(\mathcal{A})$ of invertible elements is open in \mathcal{A} .)

Another useful tool. If \mathcal{A} is a C^* -algebra, we denote by $\widetilde{\mathcal{A}} := \mathcal{A} \oplus \widetilde{\mathbf{1}}\mathbb{C}$ its *unitalization*. $\widetilde{\mathcal{A}}$ has a (unique C^* -)norm (making it a C^* -algebra). However, the way to obtain this norm depends on whether \mathcal{A} is unital or not. If \mathcal{A} is nonunital, we take the operator norm in the space $\mathcal{B}(\mathcal{A})$ of bounded linear maps on \mathcal{A} , by letting act the elements of $\widetilde{\mathcal{A}}$ on the *ideal* \mathcal{A} via left multiplication. If \mathcal{A} has already a unit $\mathbf{1}, \widetilde{\mathcal{A}}$ is isomorphic to the *-*algebraic direct sum* (that is, all operations component-wise) $\mathbb{C} \oplus \mathcal{A}$ (identifying $\mathbb{C}(\widetilde{\mathbf{1}} - \mathbf{1})$ with \mathbb{C}). The direct sum of a family of (pre-) C^* -algebras, is normed by the supremum of the norms of all components.

Spectrum. The spectrum generalizes the set of eigen-values of a matrix. The *spectrum* of an element *a* in a unital C^* -algebra (unital Banach algebra) is the compact (why?) subset

$$\sigma(a) := \{\lambda \in \mathbb{C} : a - \lambda \mathbf{1} \notin inv(\mathcal{A})\}$$

of \mathbb{C} . (Exercise: Show that the spectrum of a matrix consist of the eigen-values of the matrix.) If \mathcal{A} is nonunital, then $\sigma(a) := \tilde{\sigma}(a)$, the spectrum of $a \in \tilde{\mathcal{A}}$. (Exercise: If \mathcal{A} is unital, show that $\tilde{\sigma}(a) = \sigma(a) \cup \{0\}$. Exercise: Show that if *a* is invertible, then $a^{-1} \in C^*(a)$. (Hint: Examine first a^*a .) Consequently, the spectrum of *a* in $\mathcal{A} \ni \mathbf{1}_{\mathcal{A}}$ coincides with spectrum of *a* in any C^* -subalgebra $\mathcal{B} \ni \mathbf{1}_{\mathcal{A}}$ containing *a*.) Exercise: For every unital *-homomorphism $\varphi, \sigma(a) \supset \sigma(\varphi(a))$. Consequently, for every homomorphism, $\sigma(a) \cup \{0\} \supset \sigma(\varphi(a)) \cup \{0\}$. **Positive elements.** An element *a* in a *C*^{*}-algebra \mathcal{A} is *positive* if it is *self-adjoint* ($a^* = a$) and if $\sigma(a) \subset \mathbb{R}_+ := [0, \infty)$.

Equivalently: *a* is positive if $a = b^*b$ for some $b \in \mathcal{A}$. (Supplement: Every positive element *a* has a unique positive square root $\sqrt{a} \ge 0$, $\sqrt{a}^2 = a$. This follows, for instance, by spectral calculus. One also may take a sequence of polynomials $p_n(\lambda)$ that converge to $\sqrt{\lambda}$ uniformly on $0 \le \lambda \le ||a||$ and show that the corresponding polynomials $p_n(a)$ converge in norm to something fulfilling the properties of \sqrt{a} .)

Equivalently: *a* is positive if $\varphi(a) \ge 0$ for all *positive* linear functionals φ on \mathcal{A} . (A linear functional φ on \mathcal{A} is **positive** if $\varphi(b^*b) \ge 0$ for all $b \in \mathcal{A}$.)

Different definitions facilitate different purposes. For instance, only the third property makes it easy to show that $a \ge 0, b \ge 0 \Rightarrow a + b \ge 0$. We will see in the lecture a lemma that allows to conclude back from the third property to the others. The fact that b^*b is positive, has been an additional axiom for quite a while before Gelfand and Naimark were able to prove it from the other axioms of C^* -algebra.

If $a = a^*$, then $\sigma(a) \subset \mathbb{R}$. (The converse: A normal(!) element is self-adjoint if the spectrum is real.) Some properties we will use frequently:

- By spectral calculus, it follows that a = a* can be decomposed into a = a₊ a₋ where a_± ≥ 0 and a₊a₋ = 0. It is a bit more difficult to show that such a decomposition into positive and negative part of a self-adjoint element ist unique. Since every a ∈ A can be decomposed into its *real part* a+a*/2 and its *imaginary part* a-a*/2i, which are self-adjoint, every a is a linear combination of four positive elements,
- If $a \ge 0$ then $b^*ab \ge 0$. Since $||a|| \mathbf{1} \ge a = a^*$ (spectral calculus), we find $||a|| b^*b \ge b^*ab$.
- $u \in \mathcal{A}$ is *unitary* if $u^*u = \mathbf{1} = uu^*$. If $a = a^*$ and $||a|| \le 1$, then $a + i\sqrt{\mathbf{1} a^2}$ is a unitary. It follows that every *a* in a unital *C**-algebra is a linear combination of four unitaries. (If \mathcal{A} is nonunital, unitalize, and observe that every unitary *u* in $\widetilde{\mathcal{A}}$ can be written as $u = \lambda(v + \mathbf{1})$ with $v \in \mathcal{A}$, fulfilling $v^*v + v + v^* = 0 = vv^* + v + v^*$. Such elements are called *quasi-unitaries*; we conclude that every element in a non-unital *C**-algebra is a linear combination of four quasi-unitaries.) Unitaries have spectrum contained in the *torus* $\Pi := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and the spectrum of quasi unitaries is contained in $\Pi - 1$. Also the converse is true: A normal element with spectrum in Π (in $\Pi - 1$) is a unitary (a quasi-unitary).

Spectral radius: The *spectral radius* of *a* is $r(a) := \sup |\sigma(a)|$. Theorem: If *a* is normal, then r(a) = ||a||; in particular, $r(a^*a) = ||a||^2$ for all *a*. Corollary: Every (*–)homomorphism ϑ between C^* -algebras is a *contraction* ($||\vartheta(a)|| \le ||a||$). Corollary: An isomorphism between C^* -algebras is norm-preserving. In other words, on a *–algebra there exists at most one norm making it into a C^* -algebra. (However, there may exist different norms turning it into a pre- C^* -algebra.)

Some puzzles:

In general, we say an element *a* in a pre-C*-algebra is positive, if *a* is positive in the completion A of A. Let A be the unital *-algebra generated by one self-adjoint indeterminate *x*. (That is, the complex polynomials in *x*.) Find two C*-norms on A, the first such that the element *x* ∈ A is positive, the second such that the element -*x* ∈ A is positive.)

(Note: An element *a* in a (pre-) C^* -algebra that is positive **and** negative is 0. So, the fact that you may find a solution to the present exercise is, indeed, puzzling. It just shows that the spectrum calculated in a *-algebra does not always tell you essential things. It is the C^* -norm that tells you how to complete, and the completion may contain very essential new elements as compared with the original algebra.)

- 2. A *projection* in a (pre-)C^{*}-algebra is an element p satisfying $p^*p = p$ (so that $p^* = (p^*p)^* = p^*p = p$). Let p and q be projections. Then the following properties are equivalent.
 - (a) $p \ge q$
 - (b) p q is a projection.
 - (c) pq = q (or, equivalently, qp = q).
 - (d) qpq = q.
 - (e) pqp = q.
- 3. Let a, a', b be elements in a (pre-) C^* -algebra.
 - (a) ab = 0 if and only if $abb^* = 0$.
 - (b) Let $a \ge 0$, and $a' \ge 0$. Then (a + a')b = 0 if and only if ab = 0 and a'b = 0.
- 4. If $0 \le b_n \to b$, then $0 \le b$.

Quotients. If \mathcal{A} is a C^* -algebra and I a closed ideal in \mathcal{A} , then \mathcal{A}/I with norm $||a + I|| := \inf_{i \in I} ||a + i||$ is a C^* -algebra, too. Corollary: If $\varphi : \mathcal{A} \to \mathcal{B}$ is a (*–)homomorphism, then $\varphi(\mathcal{B})$ is a C^* -subalgebra of \mathcal{B} . (Proof: Only closedness of $\varphi(\mathcal{B})$ is a question. Since φ is bounded, the ideal $I := \ker \varphi$ is closed. Since \mathcal{A}/I is a C^* -algebra, the injective homomorphism $\hat{\varphi} : a + I \mapsto \varphi(a)$ is isometric. Therefore, its image $\hat{\varphi}(\mathcal{A}/I) = \varphi(\mathcal{B})$ is closed.)

Convention: If $R \times S \ni (r, s) \mapsto rs \in T$ is a map (called something like "product") and $R' \subset R, S' \subset S$, then **for us(!)**,

$$R'S' := \{rs \colon r \in R', s \in S'\} \subset T,$$

the set of all products from R' and S'. Even if T is a vector space, we do **not** mean span R'S', and even if T is a normed space we do **not** mean span R'S'.