
(over C) vector

space

algebra (unital) ∗–algebra pre-C∗–algebra

algebraic A product

(a, b) 7→ ab

bilinear

associative

∃(!)1 such that

1a = a = a1

(1∗ = 1∗1 = 1←)

involution

∗ : a 7→ a∗

self-inverse

anti-linear

anti-multiplicative

[Tentative:

A ⊂ La(H)

(H a pre-Hilbert space)]

normed ‖•‖ submultiplicative

‖ab‖ ≤ ‖a‖ ‖b‖

‖1‖ = 1

(← only gives ‖1‖ ≥ 1)

isometric

‖a∗‖ = ‖a‖

C∗–norm:

‖a∗a‖ = ‖a‖2

(⇒ ‖a∗‖ ≥ ‖a‖ ∀a⇒ ‖a∗‖ = ‖a‖,

similarly, 0 , ‖1‖ = ‖1∗1‖ = ‖1‖2)

Banach complete Banach

algebra

unital

Banach algebra

Banach

∗–algebra

C∗–algebra

Fundamental structure theorems on C∗–algebras:

• Every commutative C∗–algebraA is isomorphic to C0(Ω) for a (unique) locally compact space Ω.

[Ω =
{
τ : A

linear
−−−−−−−−−→
multiplicative

C
}

is a subset of the dual of A, which is locally compact with respect to the weak∗ topology. The isomorphism

A → C0(Ω) is given by a 7→ (̂a : τ 7→ τ(a)).]

[A is unital if and only if Ω is compact. Many proofs require thatA is unitalized A ⊂ Ã := A⊕ 1̃C.]

• Every C∗–algebraA is isomorphic to a norm-closed ∗–subalgebra of some B(H).

[For every element a ∈ A there exists a state ϕ such that ϕ(a∗a) = ‖a‖2, so that the GNS-representation for ϕ sends a to an operator with the

same norm. It follows that the direct sum over all GNS-representations of states (called universal representation) is faithful.]



Note! The first structure theorem is much more useful and fundamental than the second, be-

cause the isomorphism is onto a canonical object. (For every function f ∈ C0(Ω) there is a

unique element a ∈ A such that â = f . So, whatever you can do with function, you can do also

in your commutative C∗–algebra, and theorems about the algebra structure of C0(Ω) become

theorems aboutA.) It becomes most important when applied to suitable commutative subalge-

bras of general C∗–algebras. For instance, if a is a normal (a∗a = aa∗) element of A 3 1, then

the C∗–subalgebra C∗(a, 1) of A generated by a and 1 is isomorphic to C(σ(a)) where σ(a) is

the spectrum of a (see below). So for every continuous function on the (compact) subset σ(a) of

C, it makes sense to speak about f (a) (the unique element in C∗(a, 1) ⊂ A such that f̂ (a) = f ).

The isomorphism C(σ(a)) → C∗(a, 1) ⊂ A is known as (continuous) spectral calculus at a.

Frequently, also if a is not normal, one gets important information about a by looking at the

normal element a∗a ofA.

The isomorphism in the second structure theorem is (usually) not onto the object B(H).

That leaves the (sometimes quite tricky) problem to decide if an element of B(H) belongs to

the C∗–algebra or not. (Operations you can do in B(H), like, for instance, taking supremum of

two (or more) positive elements, may lead you out of the C∗–algebra.) Also, the object B(H)

is far from being canonical or “nice”. For instance, the universal representation constructed in

the proof is nonseparable, whenever dimA ≥ 2.

A useful tool. In a unital C∗–algebra (Banach algebra) A, the Neumann series
∑∞

n=0 an exists

whenever ‖a‖ < 1 and, of course, equals (1 − a)−1. (Exercise: Use this to show that the set

inv(A) of invertible elements is open inA.)

Another useful tool. If A is a C∗–algebra, we denote by Ã := A ⊕ 1̃C its unitalization.

Ã has a (unique C∗–)norm (making it a C∗–algebra). However, the way to obtain this norm

depends on whetherA is unital or not. IfA is nonunital, we take the operator norm in the space

B(A) of bounded linear maps on A, by letting act the elements of Ã on the ideal A via left

multiplication. If A has already a unit 1, Ã is isomorphic to the ∗–algebraic direct sum (that

is, all operations component-wise) C ⊕ A (identifying C(̃1 − 1) with C). The direct sum of a

family of (pre-)C∗–algebras, is normed by the supremum of the norms of all components.

Spectrum. The spectrum generalizes the set of eigen-values of a matrix. The spectrum of an

element a in a unital C∗–algebra (unital Banach algebra) is the compact (why?) subset

σ(a) := {λ ∈ C : a − λ1 < inv(A)}

of C. (Exercise: Show that the spectrum of a matrix consist of the eigen-values of the matrix.)

If A is nonunital, then σ(a) := σ̃(a), the spectrum of a ∈ Ã. (Exercise: If A is unital, show

that σ̃(a) = σ(a) ∪ {0}. Exercise: Show that if a is invertible, then a−1 ∈ C∗(a). (Hint: Examine

first a∗a.) Consequently, the spectrum of a in A 3 1A coincides with spectrum of a in any

C∗–subalgebra B 3 1A containing a.) Exercise: For every unital ∗–homomorphism ϕ, σ(a) ⊃

σ(ϕ(a)). Consequently, for every homomorphism, σ(a) ∪ {0} ⊃ σ(ϕ(a)) ∪ {0}.
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Positive elements. An element a in a C∗–algebraA is positive if it is self-adjoint (a∗ = a) and

if σ(a) ⊂ R+ := [0,∞).

Equivalently: a is positive if a = b∗b for some b ∈ A. (Supplement: Every positive element

a has a unique positive square root
√

a ≥ 0,
√

a2
= a. This follows, for instance, by spectral

calculus. One also may take a sequence of polynomials pn(λ) that converge to
√
λ uniformly on

0 ≤ λ ≤ ‖a‖ and show that the corresponding polynomials pn(a) converge in norm to something

fulfilling the properties of
√

a.)

Equivalently: a is positive if ϕ(a) ≥ 0 for all positive linear functionals ϕ on A. (A linear

functional ϕ onA is positive if ϕ(b∗b) ≥ 0 for all b ∈ A.)

Different definitions facilitate different purposes. For instance, only the third property makes

it easy to show that a ≥ 0, b ≥ 0 ⇒ a + b ≥ 0. We will see in the lecture a lemma that allows

to conclude back from the third property to the others. The fact that b∗b is positive, has been an

additional axiom for quite a while before Gelfand and Naimark were able to prove it from the

other axioms of C∗–algebra.

If a = a∗, then σ(a) ⊂ R. (The converse: A normal(!) element is self-adjoint if the spectrum

is real.) Some properties we will use frequently:

• By spectral calculus, it follows that a = a∗ can be decomposed into a = a+ − a− where

a± ≥ 0 and a+a− = 0. It is a bit more difficult to show that such a decomposition into

positive and negative part of a self-adjoint element ist unique. Since every a ∈ A can

be decomposed into its real part a+a∗
2 and its imaginary part a−a∗

2i , which are self-adjoint,

every a is a linear combination of four positive elements,

• If a ≥ 0 then b∗ab ≥ 0. Since ‖a‖ 1 ≥ a = a∗ (spectral calculus), we find ‖a‖ b∗b ≥ b∗ab.

• u ∈ A is unitary if u∗u = 1 = uu∗. If a = a∗ and ‖a‖ ≤ 1, then a + i
√

1 − a2 is a unitary.

It follows that every a in a unital C∗–algebra is a linear combination of four unitaries.

(If A is nonunital, unitalize, and observe that every unitary u in Ã can be written as

u = λ(v + 1) with v ∈ A, fulfilling v∗v + v + v∗ = 0 = vv∗ + v + v∗. Such elements

are called quasi-unitaries; we conclude that every element in a non-unital C∗–algebra is

a linear combination of four quasi-unitaries.) Unitaries have spectrum contained in the

torus Π := {λ ∈ C : |λ| = 1} and the spectrum of quasi unitaries is contained in Π − 1.

Also the converse is true: A normal element with spectrum in Π (in Π − 1) is a unitary (a

quasi-unitary).

Spectral radius: The spectral radius of a is r(a) := sup |σ(a)|. Theorem: If a is normal,

then r(a) = ‖a‖; in particular, r(a∗a) = ‖a‖2 for all a. Corollary: Every (∗–)homomorphism

ϑ between C∗–algebras is a contraction (‖ϑ(a)‖ ≤ ‖a‖). Corollary: An isomorphism between

C∗–algebras is norm-preserving. In other words, on a ∗–algebra there exists at most one norm

making it into a C∗–algebra. (However, there may exist different norms turning it into a pre-

C∗–algebra.)
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Some puzzles:

1. In general, we say an element a in a pre-C∗–algebra is positive, if a is positive in the com-

pletionA ofA. LetA be the unital ∗–algebra generated by one self-adjoint indeterminate

x. (That is, the complex polynomials in x.) Find two C∗–norms on A, the first such that

the element x ∈ A is positive, the second such that the element −x ∈ A is positive.)

(Note: An element a in a (pre-)C∗–algebra that is positive and negative is 0. So, the fact

that you may find a solution to the present exercise is, indeed, puzzling. It just shows that

the spectrum calculated in a ∗–algebra does not always tell you essential things. It is the

C∗–norm that tells you how to complete, and the completion may contain very essential

new elements as compared with the original algebra.)

2. A projection in a (pre-)C∗–algebra is an element p satisfying p∗p = p (so that p∗ =

(p∗p)∗ = p∗p = p). Let p and q be projections. Then the following properties are

equivalent.

(a) p ≥ q

(b) p − q is a projection.

(c) pq = q (or, equivalently, qp = q).

(d) qpq = q.

(e) pqp = q.

3. Let a, a′, b be elements in a (pre-)C∗–algebra.

(a) ab = 0 if and only if abb∗ = 0.

(b) Let a ≥ 0, and a′ ≥ 0. Then (a + a′)b = 0 if and only if ab = 0 and a′b = 0.

4. If 0 ≤ bn → b, then 0 ≤ b.

Quotients. If A is a C∗–algebra and I a closed ideal in A, then A/I with norm ‖a + I‖ :=

infi∈I ‖a + i‖ is a C∗–algebra, too. Corollary: If ϕ : A → B is a (∗–)homomorphism, then ϕ(B)

is a C∗–subalgebra of B. (Proof: Only closedness of ϕ(B) is a question. Since ϕ is bounded, the

ideal I := kerϕ is closed. SinceA/I is a C∗–algebra, the injective homomorphism ϕ̂ : a +I 7→

ϕ(a) is isometric. Therefore, its image ϕ̂(A/I) = ϕ(B) is closed.)

Convention: If R × S 3 (r, s) 7→ rs ∈ T is a map (called something like “product”) and

R′ ⊂ R, S ′ ⊂ S , then for us(!),

R′S ′ :=
{
rs : r ∈ R′, s ∈ S ′

}
⊂ T,

the set of all products from R′ and S ′. Even if T is a vector space, we do not mean span R′S ′,

and even if T is a normed space we do not mean span R′S ′.
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