(over \mathbb{C})	vector space	algebra	(unital)	*-algebra	pre-C*-algebra																																		
algebraic	\mathcal{A}	product $(a, b) \mapsto a b$ bilinear associative	$\exists(!) \mathbf{1}$ such that $\mathbf{1} a=a=a \mathbf{1}$ $\left(\mathbf{1}^{*}=\mathbf{1}^{*} 1=1 \leftarrow\right)$	involution *: $a \mapsto a^{*}$ self-inverse anti-linear anti-multiplicative	[Tentative: $\begin{gathered} \mathcal{A} \subset \mathcal{L}^{a}(H) \\ (H \text { a pre-Hilbert space })] \end{gathered}$																																		
normed	$\\|\bullet\\|$	submultiplicative $\\|a b\\| \leq\\|a\\|\\|b\\|$	$\begin{gathered} \\|\mathbf{1}\\|=1 \\ (\leftarrow \text { only gives }\\|\mathbf{1}\\| \geq 1) \end{gathered}$	isometric $\left\\|a^{*}\right\\|=\\|a\\|$	$\begin{gathered} C^{*} \text {-norm: } \\ \left\\|a^{*} a\right\\|=\\|a\\|^{2} \\ \left(\Rightarrow\left\\|a^{*}\right\\| \geq\\|a\\| \forall a \Rightarrow\left\\|a^{*}\right\\|=\\|a\\|,\right. \\ \text { similarly, } \left.0 \neq\\|\mathbf{1}\\|=\left\\|\mathbf{1}^{*} \mathbf{1}\right\\|=\\|\mathbf{1}\\|^{2}\right) \end{gathered}$																																		
Banach	complete	Banach algebra	unital Banach algebra	Banach *-algebra	C^{*}-algebra																																		

Fundamental structure theorems on C^{*}-algebras:

- Every commutative C^{*}-algebra \mathcal{A} is isomorphic to $C_{0}(\Omega)$ for a (unique) locally compact space Ω.
$[\Omega=\{\tau: \mathcal{A} \underset{\text { multiplicative }}{\text { linear }} \mathbb{C}\}$ is a subset of the dual of \mathcal{A}, which is locally compact with respect to the weak* topology. The isomorphism $\mathcal{A} \rightarrow C_{0}(\Omega)$ is given by $a \mapsto(\widehat{a}: \tau \mapsto \tau(a))$.]
[\mathcal{A} is unital if and only if Ω is compact. Many proofs require that \mathcal{A} is unitalized $\mathcal{A} \subset \widetilde{\mathcal{A}}:=\mathcal{A} \oplus \widetilde{\mathbf{1}} \mathbb{C}$.]
- Every C^{*}-algebra \mathcal{A} is isomorphic to a norm-closed *-subalgebra of some $\mathcal{B}(H)$.
[For every element $a \in \mathcal{A}$ there exists a state φ such that $\varphi\left(a^{*} a\right)=\|a\|^{2}$, so that the GNS-representation for φ sends a to an operator with the same norm. It follows that the direct sum over all GNS-representations of states (called universal representation) is faithful.]

Note! The first structure theorem is much more useful and fundamental than the second, because the isomorphism is onto a canonical object. (For every function $f \in C_{0}(\Omega)$ there is a unique element $a \in \mathcal{A}$ such that $\widehat{a}=f$. So, whatever you can do with function, you can do also in your commutative C^{*}-algebra, and theorems about the algebra structure of $C_{0}(\Omega)$ become theorems about \mathcal{A}.) It becomes most important when applied to suitable commutative subalgebras of general C^{*}-algebras. For instance, if a is a normal ($a^{*} a=a a^{*}$) element of $\mathcal{A} \ni \mathbf{1}$, then the C^{*}-subalgebra $C^{*}(a, \mathbf{1})$ of \mathcal{A} generated by a and $\mathbf{1}$ is isomorphic to $C(\sigma(a))$ where $\sigma(a)$ is the spectrum of a (see below). So for every continuous function on the (compact) subset $\sigma(a)$ of \mathbb{C}, it makes sense to speak about $f(a)$ (the unique element in $C^{*}(a, \mathbf{1}) \subset \mathcal{A}$ such that $\widehat{f(a)}=f$). The isomorphism $C(\sigma(a)) \rightarrow C^{*}(a, \mathbf{1}) \subset \mathcal{A}$ is known as (continuous) spectral calculus at a. Frequently, also if a is not normal, one gets important information about a by looking at the normal element $a^{*} a$ of \mathcal{A}.

The isomorphism in the second structure theorem is (usually) not onto the object $\mathcal{B}(H)$. That leaves the (sometimes quite tricky) problem to decide if an element of $\mathcal{B}(H)$ belongs to the C^{*}-algebra or not. (Operations you can do in $\mathcal{B}(H)$, like, for instance, taking supremum of two (or more) positive elements, may lead you out of the C^{*}-algebra.) Also, the object $\mathcal{B}(H)$ is far from being canonical or "nice". For instance, the universal representation constructed in the proof is nonseparable, whenever $\operatorname{dim} \mathcal{A} \geq 2$.

A useful tool. In a unital C^{*}-algebra (Banach algebra) \mathcal{A}, the Neumann series $\sum_{n=0}^{\infty} a^{n}$ exists whenever $\|a\|<1$ and, of course, equals $(\mathbf{1}-a)^{-1}$. (Exercise: Use this to show that the set $\operatorname{inv}(\mathcal{A})$ of invertible elements is open in \mathcal{A}.)

Another useful tool. If \mathcal{A} is a C^{*}-algebra, we denote by $\widetilde{\mathcal{A}}:=\mathcal{A} \oplus \widetilde{\mathbf{1}} \mathbb{C}$ its unitalization. $\widetilde{\mathcal{A}}$ has a (unique C^{*}-)norm (making it a C^{*}-algebra). However, the way to obtain this norm depends on whether \mathcal{A} is unital or not. If \mathcal{A} is nonunital, we take the operator norm in the space $\mathcal{B}(\mathcal{A})$ of bounded linear maps on \mathcal{A}, by letting act the elements of $\widetilde{\mathcal{A}}$ on the ideal \mathcal{A} via left multiplication. If \mathcal{A} has already a unit $\mathbf{1}, \widetilde{\mathcal{A}}$ is isomorphic to the *-algebraic direct sum (that is, all operations component-wise) $\mathbb{C} \oplus \mathcal{A}$ (identifying $\mathbb{C}(\widetilde{\mathbf{1}}-\mathbf{1})$ with \mathbb{C}). The direct sum of a family of (pre-) C^{*}-algebras, is normed by the supremum of the norms of all components.

Spectrum. The spectrum generalizes the set of eigen-values of a matrix. The spectrum of an element a in a unital C^{*}-algebra (unital Banach algebra) is the compact (why?) subset

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda \mathbf{1} \notin \operatorname{inv}(\mathcal{A})\}
$$

of \mathbb{C}. (Exercise: Show that the spectrum of a matrix consist of the eigen-values of the matrix.) If \mathcal{A} is nonunital, then $\sigma(a):=\widetilde{\sigma}(a)$, the spectrum of $a \in \widetilde{\mathcal{A}}$. (Exercise: If \mathcal{A} is unital, show that $\widetilde{\sigma}(a)=\sigma(a) \cup\{0\}$. Exercise: Show that if a is invertible, then $a^{-1} \in C^{*}(a)$. (Hint: Examine first a^{*}.) Consequently, the spectrum of a in $\mathcal{A} \ni \mathbf{1}_{\mathcal{A}}$ coincides with spectrum of a in any C^{*}-subalgebra $\mathcal{B} \ni \mathbf{1}_{\mathcal{A}}$ containing a.) Exercise: For every unital $*$-homomorphism $\varphi, \sigma(a) \supset$ $\sigma(\varphi(a))$. Consequently, for every homomorphism, $\sigma(a) \cup\{0\} \supset \sigma(\varphi(a)) \cup\{0\}$.

Positive elements. An element a in a C^{*}-algebra \mathcal{A} is positive if it is self-adjoint ($a^{*}=a$) and if $\sigma(a) \subset \mathbb{R}_{+}:=[0, \infty)$.

Equivalently: a is positive if $a=b^{*} b$ for some $b \in \mathcal{A}$. (Supplement: Every positive element a has a unique positive square root $\sqrt{a} \geq 0, \sqrt{a}^{2}=a$. This follows, for instance, by spectral calculus. One also may take a sequence of polynomials $p_{n}(\lambda)$ that converge to $\sqrt{\lambda}$ uniformly on $0 \leq \lambda \leq\|a\|$ and show that the corresponding polynomials $p_{n}(a)$ converge in norm to something fulfilling the properties of \sqrt{a}.)

Equivalently: a is positive if $\varphi(a) \geq 0$ for all positive linear functionals φ on \mathcal{A}. (A linear functional φ on \mathcal{A} is positive if $\varphi\left(b^{*} b\right) \geq 0$ for all $b \in \mathcal{A}$.)

Different definitions facilitate different purposes. For instance, only the third property makes it easy to show that $a \geq 0, b \geq 0 \Rightarrow a+b \geq 0$. We will see in the lecture a lemma that allows to conclude back from the third property to the others. The fact that $b^{*} b$ is positive, has been an additional axiom for quite a while before Gelfand and Naimark were able to prove it from the other axioms of C^{*}-algebra.

If $a=a^{*}$, then $\sigma(a) \subset \mathbb{R}$. (The converse: A normal(!) element is self-adjoint if the spectrum is real.) Some properties we will use frequently:

- By spectral calculus, it follows that $a=a^{*}$ can be decomposed into $a=a_{+}-a_{-}$where $a_{ \pm} \geq 0$ and $a_{+} a_{-}=0$. It is a bit more difficult to show that such a decomposition into positive and negative part of a self-adjoint element ist unique. Since every $a \in \mathcal{A}$ can be decomposed into its real part $\frac{a+a^{*}}{2}$ and its imaginary part $\frac{a-a^{*}}{2 i}$, which are self-adjoint, every a is a linear combination of four positive elements,
- If $a \geq 0$ then $b^{*} a b \geq 0$. Since $\|a\| \mathbf{1} \geq a=a^{*}$ (spectral calculus), we find $\|a\| b^{*} b \geq b^{*} a b$.
- $u \in \mathcal{A}$ is unitary if $u^{*} u=\mathbf{1}=u u^{*}$. If $a=a^{*}$ and $\|a\| \leq 1$, then $a+i \sqrt{\mathbf{1}-a^{2}}$ is a unitary. It follows that every a in a unital C^{*}-algebra is a linear combination of four unitaries. (If \mathcal{A} is nonunital, unitalize, and observe that every unitary u in $\widetilde{\mathcal{A}}$ can be written as $u=\lambda(v+\mathbf{1})$ with $v \in \mathcal{A}$, fulfilling $v^{*} v+v+v^{*}=0=v v^{*}+v+v^{*}$. Such elements are called quasi-unitaries; we conclude that every element in a non-unital C^{*}-algebra is a linear combination of four quasi-unitaries.) Unitaries have spectrum contained in the torus $\Pi:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and the spectrum of quasi unitaries is contained in $\Pi-1$. Also the converse is true: A normal element with spectrum in Π (in $\Pi-1$) is a unitary (a quasi-unitary).

Spectral radius: The spectral radius of a is $r(a):=\sup |\sigma(a)|$. Theorem: If a is normal, then $r(a)=\|a\|$; in particular, $r\left(a^{*} a\right)=\|a\|^{2}$ for all a. Corollary: Every (*-)homomorphism ϑ between C^{*}-algebras is a contraction $(\|\vartheta(a)\| \leq\|a\|)$. Corollary: An isomorphism between C^{*}-algebras is norm-preserving. In other words, on a $*$-algebra there exists at most one norm making it into a C^{*}-algebra. (However, there may exist different norms turning it into a pre-C^{*}-algebra.)

Some puzzles:

1. In general, we say an element a in a pre- C^{*}-algebra is positive, if a is positive in the completion $\overline{\mathcal{A}}$ of \mathcal{A}. Let \mathcal{A} be the unital $*$-algebra generated by one self-adjoint indeterminate x. (That is, the complex polynomials in x.) Find two C^{*}-norms on \mathcal{A}, the first such that the element $x \in \mathcal{A}$ is positive, the second such that the element $-x \in \mathcal{A}$ is positive.)
(Note: An element a in a (pre-) C^{*}-algebra that is positive and negative is 0 . So, the fact that you may find a solution to the present exercise is, indeed, puzzling. It just shows that the spectrum calculated in a $*$-algebra does not always tell you essential things. It is the C^{*}-norm that tells you how to complete, and the completion may contain very essential new elements as compared with the original algebra.)
2. A projection in a (pre-) C^{*}-algebra is an element p satisfying $p^{*} p=p$ (so that $p^{*}=$ $\left(p^{*} p\right)^{*}=p^{*} p=p$). Let p and q be projections. Then the following properties are equivalent.
(a) $p \geq q$
(b) $p-q$ is a projection.
(c) $p q=q$ (or, equivalently, $q p=q$).
(d) $q p q=q$.
(e) $p q p=q$.
3. Let a, a^{\prime}, b be elements in a (pre-) C^{*}-algebra.
(a) $a b=0$ if and only if $a b b^{*}=0$.
(b) Let $a \geq 0$, and $a^{\prime} \geq 0$. Then $\left(a+a^{\prime}\right) b=0$ if and only if $a b=0$ and $a^{\prime} b=0$.
4. If $0 \leq b_{n} \rightarrow b$, then $0 \leq b$.

Quotients. If \mathcal{A} is a C^{*}-algebra and \mathcal{I} a closed ideal in \mathcal{A}, then $\mathcal{A} / \mathcal{I}$ with norm $\|a+\mathcal{I}\|:=$ $\inf _{i \in I}\|a+i\|$ is a C^{*}-algebra, too. Corollary: If $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a (*-)homomorphism, then $\varphi(\mathcal{B})$ is a C^{*}-subalgebra of \mathcal{B}. (Proof: Only closedness of $\varphi(\mathcal{B})$ is a question. Since φ is bounded, the ideal $\mathcal{I}:=\operatorname{ker} \varphi$ is closed. Since $\mathcal{A} / \mathcal{I}$ is a C^{*}-algebra, the injective homomorphism $\hat{\varphi}: a+\mathcal{I} \mapsto$ $\varphi(a)$ is isometric. Therefore, its image $\hat{\varphi}(\mathcal{A} / \mathcal{I})=\varphi(\mathcal{B})$ is closed.)

Convention: If $R \times S \ni(r, s) \mapsto r s \in T$ is a map (called something like "product") and $R^{\prime} \subset R, S^{\prime} \subset S$, then for us(!),

$$
R^{\prime} S^{\prime}:=\left\{r s: r \in R^{\prime}, s \in S^{\prime}\right\} \subset T,
$$

the set of all products from R^{\prime} and S^{\prime}. Even if T is a vector space, we do not mean span $R^{\prime} S^{\prime}$, and even if T is a normed space we do not mean $\overline{\text { span }} R^{\prime} S^{\prime}$.

