Problems: "Hilbert modules and their applications"
 Michael Skeide

No. 1 (discussion October 28)

1. (a) Show: In a Pre-Hilbert module, $\langle y, x\rangle=\left\langle y, x^{\prime}\right\rangle$ for all y implies $x=x^{\prime}$ gilt.
(b) Show: In a pre-Hilbert module over a unital C^{*}-algebra we have $x \mathbf{1}=x$.
[Supplement (may replace (1b)): Is $\left(u_{\lambda}\right)_{\lambda \in \Lambda}$ an approximate unit for the (not necessarily unital) C^{*}-algebra \mathcal{B} (that is, for us, $\lim _{\lambda} b u_{\lambda}=b=\lim _{\lambda} u_{\lambda} b$ for every $b \in \mathcal{B}$), then $\lim _{\lambda} x u_{\lambda}=x$ for all x in a pre-Hilbert \mathcal{B}-module.]
2. Let $a: E \rightarrow F$ be an adjointable between pre-Hilbert \mathcal{B}-moduls, that is, there exists a map $a^{*}: F \rightarrow E$, the adjoint of a, such that $\langle a x, y\rangle=\left\langle x, a^{*} y\right\rangle$ for all $x \in E$ and $y \in F$. Show:
(a) a is linear.
(b) a^{*} is unique.
(c) a^{*} is adjointable.
(d) a is closable, that is, for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in E that converges to $x \in E$, we have $\lim _{n \rightarrow \infty} a x_{n}=y \Rightarrow y=a x$.
[Supplement (may replace (2d)): To what extent the statements (2a)-2c] remain true for semiHilbert modules?]
3. A projection on a pre-Hilbert module E is a map $p: E \rightarrow E$ such that $\langle p x, p y\rangle=\langle x, p y\rangle$ for all $x, y \in E$. Show: p is a self-adjoint idempotent. If $p \neq 0$, then $\|p\|=1$.
[Supplement: What changes if we require only $\langle p x, p x\rangle=\langle x, p x\rangle$?]
4. Show that the transposition $A=\left(a_{i, j}\right)_{i, j} \mapsto A^{t}=\left(a_{j, i}\right)_{i, j}$ on $M_{2}\left(=M_{2}(\mathbb{C})\right.$) is positive $(A \geq 0 \Rightarrow$ $A^{t} \geq 0$) but not 2-positive $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \mapsto\left(\begin{array}{ll}A^{t} & B^{t} \\ C^{t} & D^{t}\end{array}\right)$ is not positive on $\left.M_{2}\left(M_{2}\right)=M_{4}\right)$.

WE 1. The inner product of a Hilbert module determines the module action uniquely. At some point in the lecture we even will show that a vector space E with a sesquilinear map $(\bullet, \bullet): E \times E \rightarrow \mathcal{B}$, can be embedded into a Hilbert \mathcal{B}-module with inner product $\langle\bullet, \bullet\rangle$ such that $\langle x, y\rangle=(x, y)$ for all $x, y \in E$ (uniquely, if the Hilbert \mathcal{B}-module is generated as a Hilbert module by its subspace E) if and only if for each finite choice $x_{i} \in E, i=1, \ldots, n$ the matrix $\left(\left(x_{i}, x_{j}\right)\right)_{i, j}$ is positive in $M_{n}(\mathcal{B})$.

Show that to satisfy that condition, it is not sufficient that (\bullet, \bullet) is positive $((x, x) \geq 0)$ and definite $((x, x)=0 \Rightarrow x=0)$. In other words, find E with positive and definite (\bullet, \bullet) and elements $x_{i} \in E$, $i=1, \ldots, n$, such that the matrix $\left(\left(x_{i}, x_{j}\right)\right)_{i, j}$ is not positive in $M_{n}(\mathcal{B})$.

