Problems: "Hilbert modules and their applications" Michael Skeide No. 1 (discussion October 28)

1. (a) Show: In a Pre-Hilbert module, $\langle y, x \rangle = \langle y, x' \rangle$ for all y implies x = x' gilt.

(b) Show: In a pre-Hilbert module over a unital C^* -algebra we have $x\mathbf{1} = x$.

[Supplement (may replace (1b)): Is $(u_{\lambda})_{\lambda \in \Lambda}$ an *approximate unit* for the (not necessarily unital) C^* -algebra \mathcal{B} (that is, for us, $\lim_{\lambda} bu_{\lambda} = b = \lim_{\lambda} u_{\lambda} b$ for every $b \in \mathcal{B}$), then $\lim_{\lambda} xu_{\lambda} = x$ for all x in a pre-Hilbert \mathcal{B} -module.]

- 2. Let $a: E \to F$ be an *adjointable* between pre-Hilbert \mathcal{B} -moduls, that is, there exists a map $a^*: F \to E$, the *adjoint* of a, such that $\langle ax, y \rangle = \langle x, a^*y \rangle$ for all $x \in E$ and $y \in F$. Show:
 - (a) *a* is linear.
 - (b) a^* is unique.
 - (c) a^* is adjointable.
 - (d) *a* is *closable*, that is, for every sequence $(x_n)_{n \in \mathbb{N}}$ in *E* that converges to $x \in E$, we have $\lim_{n \to \infty} ax_n = y \Rightarrow y = ax$.

[Supplement (may replace (2d)): To what extent the statements (2a)–(2c) remain true for semi-Hilbert modules?]

3. A *projection* on a pre-Hilbert module *E* is a map $p: E \to E$ such that $\langle px, py \rangle = \langle x, py \rangle$ for all $x, y \in E$. Show: *p* is a self-adjoint idempotent. If $p \neq 0$, then ||p|| = 1.

[Supplement: What changes if we require only $\langle px, px \rangle = \langle x, px \rangle$?]

- 4. Show that the *transposition* $A = (a_{i,j})_{i,j} \mapsto A^t = (a_{j,i})_{i,j}$ on $M_2 (= M_2(\mathbb{C}))$ is *positive* $(A \ge 0 \Rightarrow A^t \ge 0)$ but not 2-*positive* $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} A^t & B^t \\ C^t & D^t \end{pmatrix}$ is not positive on $M_2(M_2) = M_4$).
- WE 1. The inner product of a Hilbert module determines the module action uniquely. At some point in the lecture we even will show that a vector space E with a sesquilinear map (\bullet, \bullet) : $E \times E \to \mathcal{B}$, can be embedded into a Hilbert \mathcal{B} -module with inner product $\langle \bullet, \bullet \rangle$ such that $\langle x, y \rangle = (x, y)$ for all $x, y \in E$ (uniquely, if the Hilbert \mathcal{B} -module is generated as a Hilbert module by its subspace E) if and only if for each finite choice $x_i \in E$, i = 1, ..., n the matrix $((x_i, x_j))_{i,j}$ is positive in $M_n(\mathcal{B})$.

Show that to satisfy that condition, it is not sufficient that (\bullet, \bullet) is *positive* $((x, x) \ge 0)$ and *definite* $((x, x) = 0 \Rightarrow x = 0)$. In other words, find *E* with positive and definite (\bullet, \bullet) and elements $x_i \in E$, i = 1, ..., n, such that the matrix $((x_i, x_j))_{i,i}$ is not positive in $M_n(\mathcal{B})$.