Problems: "Hilbert modules and their applications" Michael Skeide No. 2 (discussion November 3)

- 1. Let x be in a Hilbert \mathcal{B} -module E and denote $C := C^*(|x|)$, the C*-subalgebra of \mathcal{B} generated by $|x| := \sqrt{\langle x, x \rangle} \in \mathcal{B}$. Show:
 - (a) $x \mapsto |x|$ extends to a (unique) unitary between the Hilbert *C*-modules $F := \overline{xC}$ and *C*.
 - (b) For every $\alpha \in (0, 1)$ there exists x_{α} (unique in *F*) such that $x = x |x|^{\alpha}$.
- 2. Let $E := E_1 \oplus E_2$ (E_i pre-Hilbert \mathcal{B} -modules), which we denote frequently also as $E = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$. Show:
 - (a)

$$\mathcal{B}^{r} \begin{pmatrix} E_{1} \\ E_{2} \end{pmatrix} = \begin{pmatrix} \mathcal{B}^{r}(E_{1}) & \mathcal{B}^{r}(E_{2}, E_{1}) \\ \mathcal{B}^{r}(E_{1}, E_{2}) & \mathcal{B}^{r}(E_{2}) \end{pmatrix}.$$

(b)

$$\mathcal{B}^{a} \begin{pmatrix} E_{1} \\ E_{2} \end{pmatrix} = \begin{pmatrix} \mathcal{B}^{a}(E_{1}) & \mathcal{B}^{a}(E_{2}, E_{1}) \\ \mathcal{B}^{a}(E_{1}, E_{2}) & \mathcal{B}^{a}(E_{2}) \end{pmatrix},$$

that is, $a \in \mathcal{B}^r(E)$ is adjointable if and only if each of its components in $\mathcal{B}^r(E_j, E_i)$ is adjointable.

- 3. Recall that for a subset S of a pre-Hilbert module E we define its *orthogonal complement* as $S^{\perp} := \{x \in E : \langle S, x \rangle = \{0\}\}.$
 - (a) Show: If T is another subset of E, then $S \subset T^{\perp}$ implies $S^{\perp \perp} \subset T^{\perp}$.
 - (b) Suppose $a \in \mathcal{B}^{a}(E, E')$ and $aS = \{0\}$. Show: $a(S^{\perp \perp}) = \{0\}$, too.
- 4. Show: If *E* is *full* (that is, if the *range ideal* $\mathcal{B}_E := \overline{\text{span}}\langle E, E \rangle$ of *E* is all of \mathcal{B}), then $\sup_{\|x\| \le 1} \|xb\| = \|b\|$ for all $b \in \mathcal{B}$. (Attention: There's a trick here!)

WE 2. Let V be a normed space, let S be a subset of V, and let $p \in \mathcal{L}(V)$ be an idempotent (that is, $p^2 = p$). Examine to what extent additional properties of V, S, p (relative to each other or individual) determine the answer to the question if

$$\overline{\text{span}}(pS) = p(\overline{\text{span}}S).$$

(Here, the bar in span means closure, not completion.)