Problems: "Hilbert modules and their applications"
 Michael Skeide

No. 3 (discussion November 10)

1. Let E be a Hilbert module and let F be a closed submodule of E. Show for the submodule F^{∞} of E^{∞} we have

$$
\left(F^{\infty}\right)^{\perp}=\left(F^{\perp}\right)^{\infty} .
$$

[Note: When E^{∞} is interpreted as external tensor product $H \otimes E$ (with $\operatorname{dim} H=\# \mathbb{N}$), the formula reads

$$
(H \otimes F)^{\perp}=H \otimes F^{\perp}
$$

Of course, it holds for arbitrary H, when $H \otimes E$ corresponds to $E^{\operatorname{dim} H}$.]
2. Show:
(a) $\mathcal{K}(\mathcal{B}, E)=E$.
(b) $\mathcal{K}(E, F)=\mathcal{K}(F, E)^{*}$.
(c) $\mathcal{K}\binom{E_{1}}{E_{2}}=\left(\begin{array}{cc}\mathcal{K}\left(E_{1}\right) & \mathcal{K}\left(E_{2}, E_{1}\right) \\ \mathcal{K}\left(E_{1}, E_{2}\right) & \mathcal{K}\left(E_{2}\right)\end{array}\right)$.
3. We consider the adjointable operators on the Hilbert \mathcal{B}-module E and on the Hilbert $\mathcal{K}(E)$-module $\mathcal{K}(E)$. Show that

$$
\mathcal{B}^{a}(E) \ni a \longmapsto\left(\alpha(a): x y^{*} \mapsto(a x) y^{*}\right)
$$

defines a (*-)homomorphism $\alpha: \mathcal{B}^{a}(E) \rightarrow \mathcal{B}^{a}(\mathcal{K}(E))$, and

$$
\mathcal{B}^{a}(\mathcal{K}(E)) \ni a^{\prime} \longmapsto\left(\alpha^{\prime}\left(a^{\prime}\right): x y^{*} z \mapsto\left(a^{\prime} x y^{*}\right) z\right)
$$

its inverse α^{\prime}.
4. (a) Verify $\left(\mathbb{C}^{n}\right)^{*}=\mathbb{C}_{n}$.
(b) Show $\mathcal{L}^{r}\left(\mathbb{C}_{n}\right)=\mathbb{C i d}_{\mathbb{C}_{n}}$.

