Problems: "Hilbert modules and their applications" Michael Skeide No. 4 (discussion November 17)

1. Show that $(E^n)_m = (E_m)^n$, henceforth denoted by $M_{n,m}(E)$, and that the elements in $M_{n,m}$ are conveniently represented as $n \times m$ -matrices $X = (x_{i,j})_{i,j}$ with inner product and right action given by

$$\langle X, Y \rangle_{i,j} = \sum_{k} \langle x_{k,i}, y_{k,j} \rangle,$$
 $(XB)_{i,j} = \sum_{k} x_{i,k} b_{k,j}.$

If *E* is a correspondence from \mathcal{A} to \mathcal{B} , then $M_{n,m}(E)$ inherits the structure of a correspondence from $M_n(\mathcal{A})$ to $M_n(\mathcal{B})$ by defining the left action

$$(AX)_{i,j} = \sum_{k} a_{i,k} x_{k,j}$$

- 2. Let *E* be an \mathcal{A} - \mathcal{B} -correspondence. Show that $E \odot \mathcal{B} = \mathcal{B}$ and $\mathcal{A} \odot E = E$.
- 3. In computations in the tensor product of $_{\mathcal{R}}E_{\mathcal{B}}$ and $_{\mathcal{B}}F_{C}$, we frequently write an element in $z = \sum_{i} x_{i} \odot y_{i} \in E \odot F$ as a simple tensor $X_{n} \odot Y^{n} \in E_{n} \odot F^{n}$.
 - (a) Show that this, actually, establishes an isomorphism of \mathcal{A} -*C*-correspondences. Here and henceforth, we will write $E_n \odot F^n = E \odot F$ for such sort of isomorphisms.
 - (b) Show $M_{n,k}(E) \odot M_{k,m}(F) = M_{n,m}(E \odot F)$.
 - (c) Show $E^n \odot \mathcal{B}_m = M_{n,m}(E) = \mathcal{A}^n \odot E_m$.
 - (d) Show $M_{n,m}(E) = M_{n,m} \otimes E$.
- 4. For i = 1, 2, let E_i be a Hilbert \mathcal{B}_i -module. Choose any C^* -norm on $\mathcal{B}_1 \underline{\otimes} \mathcal{B}_2$ and denote by $\mathcal{B}_1 \otimes \mathcal{B}_2$ the C^* -algebra obtained by completion. Show:
 - (a) The Hilbert $\mathcal{B}_1 \otimes \mathcal{B}_2$ -module $\mathcal{B}_1 \otimes \mathcal{B}_2$ may be viewed as a correspondence from \mathcal{B}_1 to $\mathcal{B}_1 \otimes \mathcal{B}_2$ via the left action of \mathcal{B}_1 determined by $b'_1(b_1 \otimes b_2) = b'_1b_1 \otimes b_2$.
 - (b) The tensor product $E_1 \odot (\mathcal{B}_1 \otimes \mathcal{B}_2)$ may be viewed as a correspondence from \mathcal{B}_2 to $\mathcal{B}_1 \otimes \mathcal{B}_2$ via the left action of \mathcal{B}_2 determined by $b'_2(x_1 \odot (b_1 \otimes b_2)) = x_1 \odot (b_1 \otimes b'_2 b_2)$.
 - (c) The tensor product $E_2 \odot (E_1 \odot (\mathcal{B}_1 \otimes \mathcal{B}_2))$ is ("canonically") isomorphic to $E_1 \otimes E_2$.

[Notes: - Observe that the tensor product has no meaning, if we wish to compute first " $E_1 \odot E_2$ ". Associativity of the tensor product only holds/makes sense, if the correspondences are correspondences over the right algebras, from the beginning. Here, we define the action of \mathcal{B}_2 that enables the second tensorproduct, only *ex post* after having computed the first.

- If each E_i is a correspondence from \mathcal{A}_i to \mathcal{B}_i , by general theory, the internal tensor product in (c) is a correspondence from \mathcal{A}_2 to $\mathcal{B}_1 \otimes \mathcal{B}_2$. Of course, in the picture $E_1 \otimes E_2$, this action of \mathcal{A}_2 coincides with the canonical one. By symmetry, the same is true, exchanging E_1 and E_2 . So, $E_1 \otimes E_2$ carries actions of \mathcal{A}_1 and \mathcal{A}_2 and, moreover, these actions "commute" ($a_1a_2z = a_2a_1z$) and there is a homomorphism from $\mathcal{A}_1 \otimes \mathcal{A}_2$ into $\mathbb{B}^a(E_1 \otimes E_2)$. Wether or not this homomorphism extends to some C^* -completion $\mathcal{A}_1 \otimes \mathcal{A}_2$, depends on both norms. However the answer is always affirmative if on $\mathcal{B}_1 \otimes \mathcal{B}_2$ is the minimal (or *spatial*) C^* -tensor product or if $\mathcal{A}_1 \otimes \mathcal{A}_2$ is the maximal C^* -tensor product. In the former case, the norm on $\mathbb{B}^a(E_1) \otimes \mathbb{B}^a(E_2)$ is, in fact, the spatial norm.]