Problems: "Hilbert modules and their applications" Michael Skeide No. 5 (discussion November 24)

1. Let *E* be a Hilbert \mathcal{B} -module and let *F* be a correspondence from \mathcal{B} to *C*. Recall that a correspondence is *faithful* if the left action defines a faithful homomorphism. (We also say, 'the left action is faithful'.)

Show:

- (a) If *E* is full, then $x \odot y = x \odot y'$ for all $x \in E$ implies y = y'.
- (b) If *F* is faithful, then $x \odot y = x' \odot y$ for all $y \in F$ implies x = x'.
- 2. Find an example of two \mathcal{B} -correspondences(=correspondence from \mathcal{B} to \mathcal{B}) E and F such that

$$E \odot F = \{0\}, \qquad \qquad F \odot E \neq \{0\}.$$

3. Consider the Hilbert \mathcal{B} -module *E* as correspondence from $\mathcal{K}(E)$ to \mathcal{B}_E and establish the following isomorphisms of correspondences (over \mathcal{B}_E and over $\mathcal{K}(E)$, respectively).

$$E^* \odot E = \mathcal{B}_E, \qquad \qquad E \odot E^* = \mathcal{K}(E)$$

- 4. Let *E* be a Hilbert \mathcal{B} -module and let *F* be a correspondence from \mathcal{B} to *C*. Show:
 - (a) $a \mapsto (id_E \odot a \colon x \odot y \mapsto x \odot ay)$ defines a homomorphism $\mathcal{B}^{a,bil}(F) \to id_E \odot \mathcal{B}^{a,bil}(F) \subset \mathcal{B}^a(E \odot F).$
 - (b) If *E* is full (so that $E^* \odot E \odot F = F$), then this homomorphism is an isomorphism onto the the relative of commutant of $\mathbb{B}^a(E) \odot id_F$ in $\mathbb{B}^a(E \odot F)$ (that is, onto the set of all adjointable operators on $E \odot F$ that commute with all $a' \odot id_F$).

[In particular, if $F = \mathcal{B}$ so that $E \odot F = E$, then we get an isomorphism of the center of $\mathcal{B}^{a}(E)$ onto the center of $\mathcal{B}^{a}(\mathcal{B}) = M(\mathcal{B})$.]

[Note: The proof of the statement in Theorem 4.2.18 and Observation 4.2.20 in my Habilitation, that $a \mapsto id_E \odot a$ is a contraction even if all objects E, F, \mathcal{B}, C are not assumed complete and even if the left action of \mathcal{B} on F is not assumed contractive, is false. (It only works if \mathcal{B} is a C^* -algebra, or if the left action of \mathcal{B} on F is assumed contractive explicitly.)

Right now I don't know if the statement itself is false, or not. (I never used it)]