Other exercises to: "Hilbert modules and their applications" Michael Skeide

October 20

1. A linear map $T: \mathcal{A} \to \mathcal{B}$ is *completely positive* (*CP*) if

$$\sum_{i,j} b_i^* T(a_i^* a_j) b_j \ge 0$$

for all finite choices $a_i \in \mathcal{A}, b_i \in \mathcal{B}$. The map *T* is *n*-positive if the *inflation* $T_n \colon M_n(\mathcal{A}) \to M_b(\mathcal{B})$ (that is, *T* acting matrix element-wise) is positive.

Show: *T* is CP if and only if *T* is *n*-positive for all $n \in \mathbb{N} := \{1, 2, ...\}$. (The latter is the "usual" definition of CP.) Also, in either case T_n is CP for all $n \in \mathbb{N}$.

2.
$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^k \langle i^k x + y, i^k x + y \rangle$$

3. In the lecture we have shown that a semiinner product is symmetric (⟨x, y⟩ = ⟨y, x⟩*) automatically. Is this true also for real vector spaces? To be precise: Suppose we have a real vector space V with a bilinear map (•, •): V × V → ℝ that is positive ((x, x) ≥ 0). Is it true that always (x, y) = (y, x)?

October 21

- 4. Let A and B be *-algebras and T: A → B a linear map. Make the statement "the prescription (a ⊗ b, a' ⊗ b') := b*T(a*a')b' defines a sesquilinear map (•, •) on A ⊗ B" precise, and prove that statement.
- 5. Let A, B, C be algebras, let E be a right B-module, and let F be a left B-module. Define N_B := span{xb ⊗ y x ⊗ by: x ∈ E, b ∈ B, y ∈ F}, the subspace of E ⊗ F generated by the "relations" xb ⊗ y x ⊗ by. Recall that a blinear map j: E × F → V (into a vector space V) is *balanced* if j(xb, y) = j(x, by).
 - (a) The pair (E ⊙ F := (E ⊗ F)/N_B, i: (x, y) → x ⊙ y := x ⊗ y + N_B) consisting of a vector space E ⊙ F and a balanced bilinear map i: E×F → E ⊙ F enjoys the following *universal property*: For every bilinear balanced map j: E×F → V, there is a unique linear map j: E ⊙ F → V such that j(x ⊙ y) = j(x, y).
 - (b) If (E ⊙' F, i') is another pair enjoying that universal property, then x ⊙ y → x ⊙' y determines a unique isomorphism u: E ⊙ F → E ⊙' F such that ui = i'. (That's why the property is called *universal.*)
 - (c) If is *E* an \mathcal{A} - \mathcal{B} -bimodule and if *F* is a \mathcal{B} -*C*-bimodule, then $E \odot F$ "inherits" an \mathcal{A} -*C*-bimodule structure via $a(x \odot y)c := (ax) \odot (yc)$. Prove that. Formulate and prove the analogue universal property for balanced \mathcal{A} -*C*-bilinear mas *j* (that is, apart from being bilinear and balanced, *j* also fulfills j(ax, yc) = aj(x, y)c).

October 22

- 6. (a) The pre-Hilbert module direct sum of a finite number of Hilbert modules is always complete.
 - (b) The pre-Hilbert module direct sum of infinitely many nonzero pre-Hilbert modules is never complete.
 - (c) The Hilbert module direct sum $\bigoplus_{i \in I} E_i$ of Hilbert modules E_i consists of all families $(x_i)_{i \in I}$ $(x_i \in E_i)$ such that the sum $\sum_{i \in I} \langle x_i, x_i \rangle$ converges in \mathcal{B} over the finite subsets of I.

(Observe that projections onto "direct subsums" behave nicely.)

- 7. If L is a closed left ideal in a C^* -algebra \mathcal{A} , then $\overline{\operatorname{span}} L^*L = L \cap L^*$. (For the non-obvious direction, see the supplement in Problem 1.1.)
- 8. If a closed subspace *E* of a C^* -algebra \mathcal{A} is a *ternary subspace* (that is, if $xy^*z \in E$ for all $x, y, z \in E$), then *E* is Hilbert module over the C^* -algebra $\mathcal{B} := \overline{\text{span}} E^*E$.
- 9. Suppose S is a subspace of the right B-module E that generates E as a right B-module, that is, span SB = E. Suppose a: S → F is a map into another right B-module F. Then a extends to a (unique!) B-linear map E → F if and only if ∑_{σ∈S} σb_σ = 0 ⇒ ∑_{σ∈S} a(σ)b_σ = 0 (only finitely many b_σ ≠ 0).

October 27

- 10. Find a pre-Hilbert space H such that no two of the spaces $\mathcal{L}(H)$, $\mathcal{B}(H)$, $\mathcal{L}^{a}(H)$, $\mathcal{B}^{a}(H)$ coincide.
- 11. If *H* is a Hilbert space, then $H^* = \mathcal{B}(H, \mathbb{C})$ is a Hilbert module over the compact operators on *H*, $\mathcal{K}(H)$. (It's a ternary subspace of $\mathcal{B}\binom{\mathbb{C}}{H}$.) This $\mathcal{K}(H)$ -module is *self-dual*, that is, $\mathcal{B}^r(H^*, \mathcal{K}(H)) = (H^*)^* = H = \mathcal{B}(\mathbb{C}, H)$.
- 12. If \mathcal{I} is an ideal in $\mathcal{B} \ni \mathbf{1}$ and if $\Phi \in \mathcal{B}^r(\mathcal{I}, \mathcal{B})$ is not adjointable, then $\begin{pmatrix} 0 & \Phi \\ 0 & 0 \end{pmatrix} \in \mathcal{B}^r \begin{pmatrix} \mathcal{B} \\ \mathcal{I} \end{pmatrix}$ is not adjointable, too.
- 13. (See (6c).) Let n be a cardinal number and choose a set *I* such that #*I* = n. We define Bⁿ := ⊕_{i∈I} B. (It is worth a moments thought, to ask in which sense this does not depend on the choice of *I*.) If B is unital, then the bounded right B–linear maps from Bⁿ to B are

$$\mathcal{B}^{r}(\mathcal{B}^{\mathfrak{n}},\mathcal{B}) = \left\{ (b_{i})_{i \in I} \mid b_{i} \in \mathcal{B}, \exists M \colon \left\| \sum_{i \in I'} b_{i}^{*} b_{i} \right\| \leq M \forall I' \subset I, \#I' < \infty \right\}.$$

Find \mathcal{B} and $(b_n)_{n\in\mathbb{N}}$ in $\mathcal{B}^r(\mathcal{B}^\infty, \mathcal{B})$ but not in $(\mathcal{B}^\infty)^*$.

[Supplement: In the situation of (6c),

$$\mathcal{B}^{r}\left(\bigoplus_{i\in\mathcal{I}}E_{i},\mathcal{B}\right)\supset\left\{(x_{i})_{i\in\mathcal{I}}\mid x_{i}\in E_{i},\exists M\colon \left\|\sum_{i\in\mathcal{I}'}\langle x_{i},x_{i}\rangle\right\|\leq M\,\forall\,\mathcal{I}'\subset\mathcal{I},\#\mathcal{I}'<\infty\right\}.$$

Can you find a (necessary and) sufficient condition for equality?]