Other exercises to: "Hilbert modules and their applications" Michael Skeide

October 20

1. A linear map $T: \mathcal{A} \rightarrow \mathcal{B}$ is completely positive $(\boldsymbol{C P})$ if

$$
\sum_{i, j} b_{i}^{*} T\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for all finite choices $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$. The map T is n-positive if the inflation $T_{n}: M_{n}(\mathcal{A}) \rightarrow M_{b}(\mathcal{B})$ (that is, T acting matrix element-wise) is positive.

Show: T is CP if and only if T is n-positive for all $n \in \mathbb{N}:=\{1,2, \ldots\}$. (The latter is the "usual" definition of CP.) Also, in either case T_{n} is CP for all $n \in \mathbb{N}$.
2.

$$
\langle x, y\rangle=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\langle i^{k} x+y, i^{k} x+y\right\rangle
$$

3. In the lecture we have shown that a semiinner product is symmetric $\left(\langle x, y\rangle=\langle y, x\rangle^{*}\right)$ automatically. Is this true also for real vector spaces? To be precise: Suppose we have a real vector space V with a bilinear map $(\bullet, \bullet): V \times V \rightarrow \mathbb{R}$ that is positive $((x, x) \geq 0)$. Is it true that always $(x, y)=(y, x)$?

October 21

4. Let \mathcal{A} and \mathcal{B} be $*$-algebras and $T: \mathcal{A} \rightarrow \mathcal{B}$ a linear map. Make the statement "the prescription $\left\langle a \otimes b, a^{\prime} \otimes b^{\prime}\right\rangle:=b^{*} T\left(a^{*} a^{\prime}\right) b^{\prime}$ defines a sesquilinear map $\langle\bullet, \bullet\rangle$ on $\mathcal{A} \otimes \mathcal{B}$ " precise, and prove that statement.
5. Let $\mathcal{A}, \mathcal{B}, C$ be algebras, let E be a right \mathcal{B}-module, and let F be a left \mathcal{B}-module. Define $\mathcal{N}_{\mathcal{B}}:=$ $\operatorname{span}\{x b \otimes y-x \otimes b y: x \in E, b \in \mathcal{B}, y \in F\}$, the subspace of $E \otimes F$ generated by the "relations" $x b \otimes y-x \otimes b y$. Recall that a blinear map $j: E \times F \rightarrow V$ (into a vector space V) is balanced if $j(x b, y)=j(x, b y)$.
(a) The pair $\left(E \odot F:=(E \otimes F) / \mathcal{N}_{\mathcal{B}}, i:(x, y) \mapsto x \odot y:=x \otimes y+\mathcal{N}_{\mathcal{B}}\right)$ consisting of a vector space $E \odot F$ and a balanced bilinear map $i: E \times F \rightarrow E \odot F$ enjoys the following universal property: For every bilinear balanced map $j: E \times F \rightarrow V$, there is a unique linear map $\widehat{j}: E \odot F \rightarrow V$ such that $\widehat{j}(x \odot y)=j(x, y)$.
(b) If ($E \odot^{\prime} F, i^{\prime}$) is another pair enjoying that universal property, then $x \odot y \mapsto x \odot^{\prime} y$ determines a unique isomorphism $u: E \odot F \rightarrow E \odot^{\prime} F$ such that $u i=i^{\prime}$. (That's why the property is called universal.)
(c) If is E an $\mathcal{A}-\mathcal{B}$-bimodule and if F is a \mathcal{B} - C-bimodule, then $E \odot F$ "inherits" an $\mathcal{A}-C$-bimodule structure via $a(x \odot y) c:=(a x) \odot(y c)$. Prove that. Formulate and prove the analogue universal property for balanced $\mathcal{A}-C$-bilinear mas j (that is, apart from being bilinear and balanced, j also fulfills $j(a x, y c)=a j(x, y) c)$.

October 22

6. (a) The pre-Hilbert module direct sum of a finite number of Hilbert modules is always complete.
(b) The pre-Hilbert module direct sum of infinitely many nonzero pre-Hilbert modules is never complete.
(c) The Hilbert module direct sum $\bigoplus_{i \in I} E_{i}$ of Hilbert modules E_{i} consists of all families $\left(x_{i}\right)_{i \in I}$ $\left(x_{i} \in E_{i}\right)$ such that the sum $\sum_{i \in \mathcal{I}}\left\langle x_{i}, x_{i}\right\rangle$ converges in \mathcal{B} over the finite subsets of \mathcal{I}.
(Observe that projections onto "direct subsums" behave nicely.)
7. If L is a closed left ideal in a C^{*}-algebra \mathcal{A}, then $\overline{\operatorname{span}} L^{*} L=L \cap L^{*}$. (For the non-obvious direction, see the supplement in Problem 1.1.)
8. If a closed subspace E of a C^{*}-algebra \mathcal{A} is a ternary subspace (that is, if $x y^{*} z \in E$ for all $x, y, z \in E)$, then E is Hilbert module over the C^{*}-algebra $\mathcal{B}:=\overline{\operatorname{span}} E^{*} E$.
9. Suppose S is a subspace of the right \mathcal{B}-module E that generates E as a right \mathcal{B}-module, that is, $\operatorname{span} S \mathcal{B}=E$. Suppose $a: S \rightarrow F$ is a map into another right \mathcal{B}-module F. Then a extends to a (unique!) \mathcal{B}-linear map $E \rightarrow F$ if and only if $\sum_{\sigma \in S} \sigma b_{\sigma}=0 \Rightarrow \sum_{\sigma \in S} a(\sigma) b_{\sigma}=0$ (only finitely many $b_{\sigma} \neq 0$).

October 27

10. Find a pre-Hilbert space H such that no two of the spaces $\mathcal{L}(H), \mathcal{B}(H), \mathcal{L}^{a}(H), \mathcal{B}^{a}(H)$ coincide.
11. If H is a Hilbert space, then $H^{*}=\mathcal{B}(H, \mathbb{C})$ is a Hilbert module over the compact operators on H, $\mathcal{K}(H)$. (It's a ternary subspace of $\mathcal{B}\binom{\mathbb{C}}{H}$.) This $\mathcal{K}(H)$-module is self-dual, that is, $\mathcal{B}^{r}\left(H^{*}, \mathcal{K}(H)\right)=$ $\left(H^{*}\right)^{*}=H=\mathcal{B}(\mathbb{C}, H)$.
12. If \mathcal{I} is an ideal in $\mathcal{B} \ni \mathbf{1}$ and if $\Phi \in \mathcal{B}^{r}(\mathcal{I}, \mathcal{B})$ is not adjointable, then $\left(\begin{array}{ll}0 & \Phi \\ 0 & 0\end{array}\right) \in \mathcal{B}^{r}\binom{\mathcal{B}}{\mathcal{I}}$ is not adjointable, too.
13. (See 6ch.) Let \mathfrak{n} be a cardinal number and choose a set I such that $\# I=\mathfrak{n}$. We define $\mathcal{B}^{\mathfrak{n}}:=$ $\bigoplus_{i \in I} \mathcal{B}$. (It is worth a moments thought, to ask in which sense this does not depend on the choice of \mathcal{I}.) If \mathcal{B} is unital, then the bounded right \mathcal{B}-linear maps from \mathcal{B}^{n} to \mathcal{B} are

$$
\mathcal{B}^{r}\left(\mathcal{B}^{\mathfrak{n}}, \mathcal{B}\right)=\left\{\left(b_{i}\right)_{i \in \mathcal{I}} \mid b_{i} \in \mathcal{B}, \exists M:\left\|\sum_{i \in I^{\prime}} b_{i}^{*} b_{i}\right\| \leq M \forall I^{\prime} \subset \mathcal{I}, \# I^{\prime}<\infty\right\} .
$$

Find \mathcal{B} and $\left(b_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{B}^{r}\left(\mathcal{B}^{\infty}, \mathcal{B}\right)$ but not in $\left(\mathcal{B}^{\infty}\right)^{*}$.
[Supplement: In the situation of 6c ,

$$
\mathcal{B}^{r}\left(\bigoplus_{i \in \mathcal{I}} E_{i}, \mathcal{B}\right) \supset\left\{\left(x_{i}\right)_{i \in \mathcal{I}} \mid x_{i} \in E_{i}, \exists M:\left\|\sum_{i \in \mathcal{I}^{\prime}}\left\langle x_{i}, x_{i}\right\rangle\right\| \leq M \forall \mathcal{I}^{\prime} \subset \mathcal{I}, \# \mathcal{I}^{\prime}<\infty\right\}
$$

Can you find a (necessary and) sufficient condition for equality?]
14.

