

Assignments for the lecture on Non-Commutative Distributions Winter term 2014/2015

Assignment 1 for the tutorial on *Tuesday*, 4 November

Exercise 1. Let (\mathcal{A}, φ) be a C^* -probability space and let $X \in \mathcal{A}$.

(a) Let X be self-adjoint $(X = X^*)$. Show that there is a uniquely determined compactly supported probability measure μ on \mathbb{R} such that:

$$\int_{\mathbb{R}} t^k d\mu(t) = \varphi(X^k) \qquad \forall k \in \mathbb{N}$$

In this sense, we identify the (non-comm.) distribution of X and the measure μ .

- (b) Let X be normal $(XX^* = X^*X)$. What are the moments of X with respect to φ ? Show that again, we may identify the distribution of X with a uniquely determined compactly supported probability measure μ on \mathbb{C} .
- (c) Let $(\Omega, \Sigma, \mathbb{P})$ be a (classical) probability space. Show that the space $\mathcal{A} := L^{\infty}(\Omega, \mathbb{P})$ of all real-valued random variables together with $\varphi(X) := \mathbb{E}(X) := \int X(\omega) d\mathbb{P}(\omega)$ is a non-commutative probability space in the sense of Definition 1.1 of the lecture. In \mathcal{A} all random variables commute. In the classical theory, the measure μ from (a) is called the distribution of a random variable $X \in \mathcal{A}$. This justifies the name non-commutative distribution used in the lecture.

Exercise 2. Let (A, φ) be a C^* -probability space and let $u \in A$. We say that u is a *Haar* unitary, if it is a unitary $(u^*u = uu^* = 1)$ and $\varphi(u^k) = 0$ for all $k \in \mathbb{Z} \setminus \{0\}$. Here, we use the convention $u^{-k} = (u^*)^k$ for all $k \in \mathbb{N}$. Furthermore, consider the free group \mathbb{F}_n on n generators a_1, \ldots, a_n and denote by \mathbb{CF}_n its group $(^*$ -)algebra, i.e.:

$$\mathbb{CF}_n := \{ \sum_{g \in \mathbb{F}_n} \alpha_g g \mid \alpha_g \in \mathbb{C}, \text{ only finitely many } \alpha_g \neq 0 \} \text{ with formal addition and} \\ \left(\sum \alpha_g g \right) \cdot \left(\sum \beta_h h \right) := \sum_{a,b} \alpha_g \beta_h g h, \qquad \left(\sum \alpha_g g \right)^* := \sum \bar{\alpha}_g g^{-1}$$

- (a) Show that (\mathbb{CF}_n, τ) is a *(non-comm.)* *-probability space where $\tau (\sum \alpha_g g) := \alpha_e$ (here e is the neutral element), i.e. we also have $\tau(x^*x) \ge 0$. You may use that \mathbb{CF}_n is a *-algebra. Show that any a_i , $i = 1, \ldots, n$ is a Haar unitary.
- (b) Let u be a Haar unitary with spectrum $\sigma(u) = S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$. By Exercise 1, its distribution is given by a measure μ . Find it. Moreover, show that the identity function $z \mapsto z$ in $\mathcal{C}(S^1)$ is a Haar unitary with respect to it (i.e. we have a model of a Haar unitary in $\mathcal{C}(S^1)$).

please turn the page

Exercise 3. Let *H* be a Hilbert space and let $\mathcal{F}(H)$ be its full Fock space as defined in Example 1.7 of the lecture.

- (a) Let $f \in H$. Show that the creation operator l(f) is bounded and compute its norm. Show that the annihilation operator $l^*(f)$ is the adjoint of l(f) with respect to the inner product $\langle \cdot, \cdot \rangle$ on $\mathcal{F}(H)$.
- (b) Let H be one-dimensional and let $e \in H$ be a unit vector. Show that $\mathcal{F}(H)$ is naturally isomorphic to the Hilbert space $\ell^2(\mathbb{N}_0)$ and that l(e) is isomorphic to the unilateral shift $S \in B(\ell^2(\mathbb{N}_0))$ given by $Se_n := e_{n+1}$.
- (c) Let *H* be *n* dimensional with orthonormal basis e_1, \ldots, e_n . Show that the elements $l(e_i)$ fulfill the *Cuntz relations*, i.e.:

$$l^*(e_i)l(e_j) = \delta_{ij}, \qquad 1 - \sum l(e_i)l^*(e_i) = \text{projection onto } \mathbb{C}\Omega$$

Furthermore, show that the operators $s_i := l(e_i) + l^*(e_i)$, i = 1, ..., n do not commute.