UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Roland Speicher

Dr. Moritz Weber

Assignments for the lecture on Non-Commutative Distributions Winter term 2014/2015

Assignment 2B

for the tutorial on Tuesday, 18 November (in SR6)

Exercise 1. Consider the algebra $\mathbb{C}\langle x_1,\ldots,x_n\rangle$ of non-commutative polynomials in n non-commuting (formal) variables x_1,\ldots,x_n . For $j=1,\ldots,n$, we denote by

$$\partial_i: \mathbb{C}\langle x_1,\ldots,x_n\rangle \to \mathbb{C}\langle x_1,\ldots,x_n\rangle \otimes \mathbb{C}\langle x_1,\ldots,x_n\rangle$$

the non-commutative derivative with respect to x_j . Prove Remark 3.3(2), i.e. prove that

$$p \otimes 1 - 1 \otimes p = \sum_{j=1}^{n} (\partial_{j} p \cdot x_{j} \otimes 1 - 1 \otimes x_{j} \cdot \partial_{j} p)$$

holds for any $p \in \mathbb{C}\langle x_1, \dots, x_n \rangle$.

Exercise 2. Let \mathcal{B} be a unital algebra and consider the algebra $\mathcal{B}\langle x_1,\ldots,x_n\rangle$ of non-commutative polynomials over \mathcal{B} in n non-commuting (formal) variables x_1,\ldots,x_n . For $j=1,\ldots,n$, we denote by

$$\partial_j: \mathcal{B}\langle x_1,\ldots,x_n\rangle \to \mathcal{B}\langle x_1,\ldots,x_n\rangle \otimes \mathcal{B}\langle x_1,\ldots,x_n\rangle$$

the non-commutative derivative over \mathcal{B} with respect to x_i .

(a) Let \mathcal{M} be an arbitrary $\mathcal{B}\langle x_1, \ldots, x_n \rangle$ -bimodule and let

$$\delta: \mathcal{B}\langle x_1, \ldots, x_n \rangle \to \mathcal{M}$$

be a non-commutative derivation over \mathcal{B} in the sense that we have $\delta(b) = 0$ for all $b \in \mathcal{B}$ and

$$\delta(p_1 p_2) = p_1 \cdot \delta(p_2) + \delta(p_1) \cdot p_1 \quad \text{for all } p_1, p_2 \in \mathcal{B}\langle x_1, \dots, x_n \rangle,$$

where \cdot denotes the left and right action, respectively, of $\mathcal{B}\langle x_1,\ldots,x_n\rangle$ on \mathcal{M} . Show that for any $p \in \mathcal{B}\langle x_1,\ldots,x_n\rangle$

$$\delta(p) = \sum_{j=1}^{n} (\partial_{j} p) \sharp \delta(x_{j}),$$

where $\sharp : (\mathcal{B}\langle x_1, \dots, x_n \rangle \otimes \mathcal{B}\langle x_1, \dots, x_n \rangle) \times \mathcal{M} \to \mathcal{M}$ is defined by bilinear extension of $(p_1 \otimes p_2)\sharp m := p_1 \cdot m \cdot p_2$.

(b) Let $\mathcal{R}_{\mathcal{B}} \subseteq \mathcal{B}\langle x_1, \dots, x_n \rangle \otimes \mathcal{B}\langle x_1, \dots, x_n \rangle$ be the linear subspace spanned by

$$\{p_1b \otimes p_2 - p_1 \otimes bp_2 | p_1, p_2 \in \mathcal{B}\langle x_1, \dots, x_n \rangle, b \in \mathcal{B}\}.$$

We consider the quotient space

$$\mathcal{M} := \mathcal{B}\langle x_1, \dots, x_n \rangle \otimes_{\mathcal{B}} \mathcal{B}\langle x_1, \dots, x_n \rangle$$
$$:= (\mathcal{B}\langle x_1, \dots, x_n \rangle \otimes \mathcal{B}\langle x_1, \dots, x_n \rangle) / \mathcal{R}_{\mathcal{B}},$$

where we put $p_1 \otimes_{\mathcal{B}} p_2 := p_1 \otimes p_2 + \mathcal{R}_{\mathcal{B}}$. Justify that \mathcal{M} is a $\mathcal{B}\langle x_1, \dots, x_n \rangle$ -bimodule and show that $\delta : \mathcal{B}\langle x_1, \dots, x_n \rangle \to \mathcal{M}$ defined by

$$\delta(p) := p \otimes_{\mathcal{B}} 1 - 1 \otimes_{\mathcal{B}} p$$
 for any $p \in \mathcal{B}\langle x_1, \dots, x_n \rangle$

is a non-commutative derivation over \mathcal{B} .

- (c) Apply the formula obtained in (a) to the derivation considered in (b). Convince yourself that your result reduces in the case $\mathcal{B} = \mathbb{C}$ to the formula that was proven in Problem 1.
- (d) Consider $p \in \mathcal{B}\langle x_1, \ldots, x_n \rangle$. Assume that $\partial_i p = 0$ for all $i = 1, \ldots, n$. Show that $p \in \mathcal{B}$.

Exercise 3. Let S_1, \ldots, S_n be the n free semicircular elements from Example 1.7 (compare also Theorem 3.14). Fix a natural m. Let $f: \{1, \ldots, n\}^m \to \mathbb{C}$ be any function that "vanishes on the diagonals", i.e., $f(i_1, \ldots, i_m) = 0$ whenever there are $k \neq l$ such that $i_k = i_l$. Put

$$P := \sum_{i_1, \dots, i_m = 1}^n f(i_1, \dots, i_m) S_{i_1} \cdots S_{i_m} \in \mathbb{C}\langle S_1, \dots, S_n \rangle.$$

Calculate

$$\sum_{i=1}^{n} \partial_i^* \partial_i P.$$