

Assignments for the lecture on Non-Commutative Distributions Winter term 2014/2015

Assignment 3A

for the tutorial on *Tuesday*, 2 December (in SR6)

Exercise 1. Let $(U_n)_{n \in \mathbb{N}_0}$ be the *(rescaled) Chebyshev polynomials of the second kind*, i.e. the sequence of polynomials $U_n \in \mathbb{C}\langle x \rangle$, which are defined recursively by

 $U_0(x) = 1$, $U_1(x) = x$, and $U_{n+1}(x) = xU_n(x) - U_{n-1}(x)$ for all $n \in \mathbb{N}$.

Let $\partial_x : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle$ be the non-commutative derivative with respect to x. Show that

$$\partial_x U_n(x) = \sum_{k=1}^n U_{k-1}(x) \otimes U_{n-k}(x) \quad \text{for all } n \in \mathbb{N}.$$

Exercise 2. Let S be a semicircular variable as in Example 1.7 and let $\partial_S : \mathbb{C}\langle S \rangle \to \mathbb{C}\langle S \rangle \otimes \mathbb{C}\langle S \rangle$ be the non-commutative derivative with respect to S. Furthermore, we consider the polynomials $(U_n)_{n \in \mathbb{N}_0}$ from Exercise 1. Prove the following statements:

(a) For all $m, n \in \mathbb{N}_0$, we have

$$\varphi(U_m(S)U_n(S)^*) = \delta_{m,n}.$$

Moreover, $U_n(S)^* = U_n(S)$.

(b) For any $P \in \mathbb{C}\langle S \rangle$, it holds true that

$$\|\partial_S^*(P \otimes 1)\|_2 = \|P\|_2$$

and

$$\|(\mathrm{id}\otimes\varphi)(\partial_S P)\|_2 \le \|P\|_2.$$

Note that this is in fact a stronger version of Theorem 3.19.

(c) The statement in (b) shows, that $(id \otimes \varphi) \circ \partial_S$ is a bounded operator (with respect to $\|\cdot\|_2$). Show that this is *not* true for ∂_S . To do so, show that $\|U_n\|_2 = 1$ and $\|\partial_S(U_n)\|_2 = \sqrt{n}$.