

Assignments for the lecture on Non-Commutative Distributions Winter term 2014/2015

Assignment 4B

for the tutorial on *Tuesday*, 16 December (in SR6)

Exercise 1. We consider the non-commutative C^* -probability space $(M_n(\mathbb{C}), \operatorname{tr}_n)$, which is obtained by endowing the C^* -algebra $M_n(\mathbb{C})$ of all complex $n \times n$ matrices with the normalized trace $\operatorname{tr}_n : M_n(\mathbb{C}) \to \mathbb{C}$ defined by

$$\operatorname{tr}_n(A) := \frac{1}{n} \sum_{i=1}^n a_{i,i} \quad \text{for any matrix } A = (a_{i,j})_{i,j=1}^n \in M_n(\mathbb{C}).$$

Show that

$$\lim_{k \to \infty} \left(\operatorname{tr}_n \left((A^* A)^k \right) \right)^{\frac{1}{2k}} = \|A\| \quad \text{for all } A \in M_n(\mathbb{C}).$$

Hint: Basic linear algebra might be helpful.

Exercise 2. Let (M, τ) be a tracial W^* -probability space and let self-adjoint elements $X_1, \ldots, X_n \in M$ be given. We assume that a conjugate system (ξ_1, \ldots, ξ_n) for (X_1, \ldots, X_n) exists.

Prove Lemma 6.5: For all $P_1, P_2 \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ and for each $j = 1, \ldots, n$, we have the following inequalities:

(a)
$$\|\partial_i^*(P_1 \otimes P_2)\|_2 \le 3\|\xi_j\|_2\|P_1\|\|P_2\|$$

(b) $\|(\mathrm{id} \otimes \tau)((\partial_j P_1) \cdot P_2)\|_2 \le 4 \|\xi_j\|_2 \|P_1\| \|P_2\|$ and

$$\|(\tau \otimes \mathrm{id})(P_1 \cdot (\partial_j P_2))\|_2 \le 4\|\xi_j\|_2\|P_1\|\|P_2\|$$

Hint: Combine Theorem 3.9 and Theorem 3.19 in order to prove (a). For proving (b), use in addition the idea of "integration by parts".