

Assignments for the lecture on Non-Commutative Distributions Winter term 2014/2015

Assignment 5A

for the tutorial on *Tuesday*, 20 January (in SR6)

These excercises will follow excercise 3.2 in Vern Paulsen's book, *Completely Bounded Maps and Operator Algebras*. You may visit Williams if you would like to see his copy of this book.

Exercise 1. Let P, Q, A be operators on some Hilbert space \mathcal{H} and assume that P and Q are positive. The identity operator on \mathcal{H} will be denoted by 1.

(a) Show that
$$\begin{pmatrix} P & A \\ A^* & Q \end{pmatrix} \ge 0$$
 if and only if
 $|\langle Ax, y \rangle|^2 \le \langle Py, y \rangle \langle Qx, x \rangle$ for all $x, y \in \mathcal{H}$.

Hint: this may be reduced to Lemma 3.1 (i) in Paulsen's book (which guarantees the validity of (a) in the special case P = Q = 1) but the proof is distasteful. Extra points if you can provide a proof based on more basic principles.

- (b) Prove Lemma 3.1. (ii) of Vern Paulsen's book: $\begin{pmatrix} 1 & A \\ A^* & Q \end{pmatrix} \ge 0$ if and only if $A^*A \le Q$.
- (c) Show that if $\begin{pmatrix} P & A \\ A^* & Q \end{pmatrix} \ge 0$, then for any $x \in \mathcal{H}$ we have that

$$0 \le \langle (P + A + A^* + Q)x, x \rangle \le \left(\sqrt{\langle Px, x \rangle} + \sqrt{\langle Qx, x \rangle}\right)^2$$

and hence

$$||P + A + A^* + Q|| \le (||P||^{1/2} + ||Q||^{1/2})^2.$$

(d) Show that if $\begin{pmatrix} P & A \\ A^* & P \end{pmatrix} \ge 0$, then $A^*A \le \|P\|P$ and, in particular, $\|A\| \le \|P\|$.