UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Roland Speicher

Dr. Moritz Weber

Übungen zur Vorlesung Operatoralgebren

Sommersemester 2013

Blatt 3

Abgabe: Montag, 6.5.2013, 12:00 Uhr in den Briefkästen beim Zeichensaal, Gebäude E2 5

Aufgabe 1 (10 Punkte). Beweisen Sie die Aussage von Bemerkung 2.3: Sei A eine (nicht notwendigerweise unitale) C^* -Algebra, $B \subset A$ eine C^* -Unteralgebra und $a \in A$. Zeigen Sie, dass $\sigma_A(a) \cup \{0\} = \sigma_B(a) \cup \{0\}$ gilt.

Diskutieren Sie auch die Spezialfälle wenn A und/oder B unital sind: (i) A und B unital mit derselben Eins, (ii) A und B unital mit verschiedenen Einsen, (iii) nur A oder nur B unital.

Aufgabe 2 (10 + 5* Punkte). Sei H ein Hilbertraum und sei $x \in B(H)$. Wir definieren $|x| := \sqrt{x^*x}$.

- (a) Zeigen Sie, dass $\ker|x| = \ker(x)$ ist und dass die Abbildung $\Psi : \operatorname{Bild}|x| \to \operatorname{Bild}(x)$, $|x|\xi \mapsto x\xi$ wohldefiniert und isometrisch ist. Somit besitzt sie eine isometrische Fortsetzung $\Psi_0 : \overline{\operatorname{Bild}(x)} \to \overline{\operatorname{Bild}(x)}$.
- (b) Wir definieren

$$v = \begin{cases} \Psi_0, & \text{auf } \overline{\text{Bild}|x|} \\ 0, & \text{auf } \overline{\text{Bild}|x|}^{\perp} = \ker(x) \end{cases}$$

Zeigen Sie, dass v eine partielle Isometrie ist, dass also $v = vv^*v$ gilt, und dass v^*v die Projektion auf $(\ker(x))^{\perp}$ sowie vv^* die Projektion auf $\overline{\text{Bild}(x)}$ ist.

- (c) Zeigen Sie, dass sich x als x = v|x| schreiben lässt. Zeigen Sie auch, dass die partielle Isometrie v eindeutig bestimmt ist durch die Forderungen x = v|x| und $\ker(v) = \ker(x)$. Diese Zerlegung von v heißt Polarzerlegung.
- (d)* Zeigen Sie, dass v unitär ist (also $v^*v = vv^* = 1$), falls x invertierbar ist. Zeigen Sie auch, dass dann $v \in C^*(x,1)$ ist. Finden Sie ein Beispiel eines Operators $x \in B(H)$, dessen Polarzerlegung $v \notin C^*(x,1)$ erfüllt.

Aufgabe 3 (10 Punkte). (a) Seien $f_n : \mathbb{R} \to \mathbb{R}$ Funktionen in $C_0(\mathbb{R})$ mit $f_n(x) = 1$ für |x| < n. Zeigen Sie, dass die Folge $(f_n)_{n \in \mathbb{N}}$ eine approximierende Eins für $C_0(\mathbb{R})$ ist.

(b) Sei H ein separabler Hilbertraum mit unendlicher Dimension. Finden Sie eine Folge $(p_n)_{n\in\mathbb{N}}$ von Operatoren, welche eine approximierende Eins für die kompakten Operatoren $\mathcal{K}(H)$ ist.

Aufgabe 4 (10 Punkte). Sei $L^{\infty}([0,1])$ der Raum der Borel-messbaren, beschränkten Funktionen auf [0,1]. Hierbei werden zwei Funktionen f und g identifiziert, falls $\{t \in [0,1] \mid f(t) \neq g(t)\}$ eine Nullmenge bzgl. des Lebesguemaßes ist.

- (a) Zeigen Sie, dass der Raum $L^{\infty}([0,1])$ versehen mit der wesentlichen Supremumsnorm eine kommutative C^* -Algebra ist.
- (b) Zeigen Sie, dass der Raum $\Omega(L^{\infty}([0,1]))$ total unzusammenhängend ist: Die einzigen zusammenhängenden Teilmengen von $\Omega(L^{\infty}([0,1]))$ sind die leere Menge sowie die Einpunktmengen $\{\varphi\}$ mit $\varphi \in \Omega(L^{\infty}([0,1]))$.

Fazit: Der Raum (genauer: die von Neumann-Algebra) $L^{\infty}([0,1])$ ist zwar auch eine kommutative C^* -Algebra und somit isomorph zu $\mathcal{C}(\Omega(L^{\infty}([0,1])))$, diese Darstellung ist aber nicht sehr schön und meist auch nicht sehr hilfreich.