UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Roland Speicher

Dr. Moritz Weber

Übungen zur Vorlesung Operatoralgebren

Sommersemester 2013

Blatt 11

Abgabe: Dienstag, 9.7.2013, 10:00 Uhr in den Briefkästen beim Zeichensaal, Gebäude E2 5

Aufgabe 1 (10 Punkte). Seien $k, n \in \mathbb{N}$ und sei $\varphi : M_n(\mathbb{C}) \to M_{nk}(\mathbb{C})$ ein *-Homomorphismus.

(a) Sei φ unital. Zeigen Sie, dass φ dann bis auf unitäre Äquivalenz der Form

$$\iota: M_n(\mathbb{C}) \to M_{nk}(\mathbb{C}), \qquad x \mapsto \begin{pmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & x \end{pmatrix}$$

ist, dh. es gibt ein Unitäres $u \in M_{nk}(\mathbb{C})$, so dass $\varphi(x) = u \iota(x)u^*$ gilt, für alle $x \in M_n(\mathbb{C})$.

- (b) Betrachten Sie auch den Fall, dass φ nicht unital ist.
- (c) Ist $M_n(\mathbb{C}) \oplus M_k(\mathbb{C}) \to M_l(\mathbb{C})$ ein Homomorphismus der Form

$$M_n(\mathbb{C}) \oplus M_k(\mathbb{C}) \to M_l(\mathbb{C}), \qquad x \oplus y \mapsto \begin{pmatrix} x & & & & \\ & \ddots & & & & \\ & & x & & & \\ & & & y & & \\ & & & & \ddots & \\ & & & & y & \\ & & & & & 0 \end{pmatrix}$$

so schreiben wir das diagrammatisch als:

$$\begin{array}{ccc}
n & \stackrel{\alpha}{\rightarrow} & b \\
k & \nearrow &
\end{array}$$

Hierbei sind α und β die entsprechenden Multiplizitäten.

Charakterisieren Sie alle Einbettungen (sowohle unitale wie auch nicht-unitale) von $M_2(\mathbb{C}) \oplus M_3(\mathbb{C})$ nach $M_{15}(\mathbb{C})$ bis auf unitäre Äquivalenz mit Hilfe obiger Diagramme.

bitte wenden

Aufgabe 2 (10 Punkte).	(a)	Welche	AF-Algebren	werden	durch	folgende	Bratteli-
Diagramme beschrieb	en?	Welche s	sind unital?				

(i) 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow ...

$$(ii) \qquad 1 \qquad \rightarrow \qquad 1 \qquad \rightarrow \qquad 1 \qquad \rightarrow \qquad 1 \qquad \rightarrow \qquad \dots$$

$$\searrow \qquad \qquad \searrow \qquad \qquad \searrow \qquad \qquad \qquad \searrow$$

$$1 \qquad \rightarrow \qquad 2 \qquad \rightarrow \qquad 3 \qquad \rightarrow \qquad 4 \qquad \rightarrow \qquad \dots$$

- (b) Zeigen Sie, dass die drei durch die folgenden Bratteli-Diagramme gegebenen AF-Algebren isomorph sind (hierbei bezeichnet $\stackrel{2}{\rightarrow}$ einen Pfeil der Multiplizität 2).
 - $(i) \qquad 1 \quad \stackrel{2}{\rightarrow} \quad 2 \quad \stackrel{2}{\rightarrow} \quad 4 \quad \stackrel{2}{\rightarrow} \quad 8 \quad \stackrel{2}{\rightarrow} \quad \dots$

- **Aufgabe 3** (20 Punkte). (a) Seien φ und ψ zwei *-Homomorphismen von $\bigoplus_{k=1}^N M_{n_k}(\mathbb{C})$ nach $\bigoplus_{l=1}^M M_{m_l}(\mathbb{C})$ mit $\operatorname{tr}_{M_{m_l}(\mathbb{C})}(\varphi(E_{11}^{(k)})) = \operatorname{tr}_{M_{m_l}(\mathbb{C})}(\psi(E_{11}^{(k)}))$ für alle l, k, wobei $E_{ij}^{(k)} \in M_{n_k}(\mathbb{C})$, $1 \leq i, j \leq n$ die kanonischen Matrixeinheiten von $M_{n_k}(\mathbb{C})$ sind. Zeigen sie, dass dann ein Unitäres $u \in \bigoplus M_{m_l}(\mathbb{C})$ existiert, so dass $\varphi(x) = u\psi(x)u^*$ für alle $x \in \bigoplus M_{n_k}(\mathbb{C})$ gilt. (Beginnen Sie mit N = M = 1, dann nur M = 1, dann der allgemeinen Fall.)
 - (b) Sei $A = \lim(A_n, \varphi_n)$ eine AF-Algebra mit $A_n = \bigoplus_{k=1}^{N_n} M_{m_k^{(n)}}(\mathbb{C})$. Überlegen Sie sich, dass die Anzahl der Pfeile im zugehörigen Bratteli-Diagramm von $m_k^{(n)}$ nach $m_l^{(n+1)}$ genau durch $\operatorname{tr}_{M_m^{(n+1)}(\mathbb{C})}(\varphi(E_{11}^{(k)}))$ gegeben ist.
 - (c) Seien $A = \lim(A_n, \varphi_n)$ und $B = \lim(B_n, \psi_n)$ zwei AF-Algebren, die die gleichen Bratteli-Diagramme besitzen. Zeigen Sie, dass A und B isomorph sind. Nehmen Sie dazu o.E. an, dass $A_n = B_n$ für alle n ist, und finden Sie Unitäre $u_n \in A_n$, so dass $u_{n+1}\varphi_n(x)u_{n+1}^* = \psi_n(u_nxu_n^*)$ für alle $x \in A_n$ und alle $n \in \mathbb{N}$ gilt.

Bemerkung: Die Aufgaben 2 und 3 zeigen also: Verschiedene Bratteli-Diagramme können isomorphe AF-Algebren ergeben, aber verschiedene (dh. nicht-isomorphe) AF-Algebren können nicht das selbe Bratteli-Diagramm haben.