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0 A brief reminder on Hilbert spaces
and operators on Hilbert spaces

Throughout these lecture notes, the analytic closure in a topological (X, %) for
A C X will be denoted clg(A) or just cl(A), if no confusion is to be feared.

Definition 0.1: A pre-Hilbert space (H, (-,-)) is a IX-vector space H (where K = R
or IX = C) that is endowed with an inner product (-, -), i.e. a map

() Hx H—K
that satisfies
(1) Az 4+ py, z) = Max, z) + ply, z) for all x,y,z € H, A\, p € K,
(ii) (z,y) = (y,z) for all z,y € H,
(iii) (x,z) >0 for all z € H,
(iv) If (z,x) = 0, then z = 0.

A Hilbert space (H, (-,-)) is a pre-Hilbert space (H, (-,-)) that is complete (i.e. a
Banach space) with respect to the norm

[l -+ H — [0, 00)
1
x+— (z,x)2
that is induced by the inner product.

Remark 0.2 (Properties of pre-Hilbert spaces): Let (H, (-, -)) be a pre-Hilbert space
over K.

(i) For all z,y,z € H, A\, u € K, we have that

(2,22 + py) = Mz, z) + 7z, y).

(ii) ||| is indeed a norm and the Cauchy-Schwarz inequality holds, i.e. for all
x,y € H:
[z o) < ll=llyll-

(iii) ||-|| satisfies the parallelogram identity, i.e. for all x,y € H:
lz + yl* + llz = yl* = 2(|l[* + llylI*)

In fact, a normed space is a pre-Hilbert space if and only if the norm satsifies
the parallelogram identity. Indeed, the inner product can be recovered by the
polarisation identities
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0 A brief reminder on Hilbert spaces and operators on Hilbert spaces

(2,9) = (e + I ~ o — o) (f K = R)

(iv) If x,y € H are orthogonal (x L y), i.e. (x,y) = 0, then the Pythagorean
identiy holds, i.e.

lz +yl* = [l + lly]1*.

(v) The completion of a pre-Hilbert space (H, (-,-)) is a Hilbert space.

Remark 0.3 (Properties of Hilbert spaces): Let (H, (-, -)) be a Hilbert space.

(i) If C C H is closed and convex, then for each z € H \ C there is a unique
point yg € C, called the best approximation to x such that

— yo|| = dist(z, C) := inf |z — y]|.
lz = yoll = dist(=, C) := inf ||z — ]|

(ii) If K C H is a closed linear subspace, then yo € K is the best approximation
toz € H\ K if and only if (z — yo,y) =0 for all y € K.

(iii) Let M C H be any subset. We call
Mt ={zecH|VyeM: (z,y)=0}
the orthogonal complement of M in H. Note that M is a closed linear subspace

of H.

(iv) Let Ky, Ko C H be closed linear subspaces with Ky L Ky, i.e. (y1,y2) =0
for all y; € K1,ys € K. Then the (orthogonal) direct sum

Ki®Ky={y1+y2 |y € K1,y2 € K»}
is again a closed linear subspace of H. Furthermore, K; N Ko = {0} and each

y € K71 ® K5 has a unique decomposition y = y; + y2 with y; € K7 and y2 € Ko.

(v) The projection theorem (Theorem 5.18, Functional Analysis I) says that H
decomposes as H = K @ K~ for any closed linear subspace K C H; in fact each
x € H can be written as = z1 + x2, where 21 € K and x5 € K+ are the best
approximations in K and K= respectively to z.

(vi) The Riesz representation theorem (Theorem 5.20, Functional Analysis I)
says that the dual space H' := B(H,K) = {f : H — K linear and bounded} can
be identified with H via the anti-linear isometric isomorphism

j:H — H
y— fyi= ().

In particular H = H”, i.e. H is reflexive.



(vii) A family (e;)ier is called orthonormal system, if (e;,e;) = 6; ; for all ¢,j € I.
For such (e;);er, Bessels inequality holds, i.e. for all x € H it holds

>l enl? < el

el

with equality if and only if x = ., (z, e;)e; (Theorem 5.27, Functional Analysis
I). We call (e;);er an orthonormal basis, if one of the following equivalent conditions
is satisfied:

(1) (e;)ier is a maximal orthonormal system,

(2) If & L e; for all i € I, then z =0,

(3) For all x € H it holds x = >,/ (x, e;)e;,

(4) For all z € H it holds ||z[? = >,/ [(z, &) [?,

(5) The set {) ;cpaie; | F Can I, € K} is dense in H.
If (f;) e is another orthonormal basis of H, then |I| = |J|; the unique cardinality
of an orthonormal basis of H is called the (Hilbert space) dimension of H, denoted
by dim H. Every Hilbert space admits an orthonormal basis. Two Hilbert spaces

H and K are isomorphic (H = K), i.e. there is a sujective linear map U : H - K
that satisfies

<Ux7Uy>K = <x7y>H for all T,y € H,
if and only if dim H = dim K.
If dim H is countable, we call H separable; this is equivalent to H being separable

as a Banach space (i.e. there is a countable dense subset).

Example 0.4: (i) K" is a Hilbert space with the inner product
n
o) =S agm;,  fora= (o) € (e n) | € K
i=1
(i) If (©2, 3§, p) is a measure space, then

L2(Q, p) := {f : Q — C measurable : /|f(cu)|2 dp(w) < oo}/./\/,
Q

where N := {f : @ — C measurable | u({w € Q : f(w) # 0}) = 0}, is a Hilbert
space with inner product

(f.9) = / F(@)g(@) dp for all f,g € L*(Q, ).

IThis is the so called theorem of Parseval, refer to Theorem 5.28 from the Functional Analysis I
lecture notes.



0 A brief reminder on Hilbert spaces and operators on Hilbert spaces

In particular, if a set I is endowed with the counting measure oy, we obtain the
Hilbert space ¢2(I) := L?(I, 07) with dim ¢2(I) = |I|. Each separable Hilbert space
H that is not finite dimensional satisfies H = ¢*(IN).

An orthonormal basis of L?([0,27), A!) with the Lebesgue measure A\ on [0, 27)
is given by (e, )nez where

elnt for t € [0, 2m).

For f € L?([0,27), A!), the representation f = >
called the Fourier series of f and

nez(fren)en (in the L?-sense) is

1

2m
— ft)e AN (t)
27T 0

A 1
= — s 67 =

fn \/ﬂg )

are called the Fourier coefficients; in particular || f||* = 27 ZnGZ'fn|2'

(iii) Hardy spaces and Bergman spaces are Hilbert spaces of holomorphic func-
tions, especially so-called reproducing Hilbert spaces.

Remark 0.5: Let X be a vector space over K.

(i) A map p: X — [0,00) is called a seminorm, if it satisfies the following
statements:

e For all z € X and A € K it holds p(Az) = [A|p(z),

e For all 2,y € X it holds p(z + y) < p(x) + p(y)
For x € X and r > 0, we put By(z,7) :={y € X | p(y —z) <r}.

(ii) We call X

e topological vector space, if X is endowed with a topology ¥ with respect to
which

+: X xX —X G Kx X — X
(r,y) — x+vy (,2) — ax

are both continuous.

e [ocally convex vector space, if X is a topological vector space whose topology
¥ is generated by some family P of seminorms, i.e. U C X is open in (X, %)
if and only if

Ve eUIneN3py,...,p, € PIer,....e0>0: (| By, (2,6) CU.

i=1

That topology is Hausdorff if and only if for all 0 # = € X, there is p € P such
that p(x) > 0.



Definition 0.6: Let (H, (-,)) be a Hilbert space over K.

(i) The topology induced by ||| is called the strong topology on H.

(ii) The locally convex (Hausdorff) topology induced by the family P = {p, |
x € H} of seminorms

Dy H— [0, 00)
y — [y, 2],
is called the weak topology on H.
Theorem 0.7: Let (H,(-,-)) be a Hilbert space over K.

(i) If a sequence (Tp)nen in H converges weakly to some point x € H and
|znll = llz]] as n — oo, then (z,)new converges strongly to x.

(ii) Ewvery bounded sequence in H has a weakly convergent subsequence.

(iii) Every bounded sequence (x,)nen has a weakly convergent subsequence (T, )keN

such that
1 X
(? kzzl x"") KeN

converges strongly (Theorem of Banach-Saks).
Proof: Part (ii) and (iii) are exercises, we want to show part (i). We have
& — | = [l2]|?* — 2Re((wn, z)) + |2, ]2
and by weak convergence of (x,),en we also have
(2, 2) — ||lz]|?| = (@0 — 2,2)| = po(n — ) — 0 as n — oo,

i.e. (rn,z) — ||z||* as n — oo, hence Re({xn,z)) — ||z||* as n — oo. Thus it holds
|z — z,|| — 0 as n — co. [ |

Remark 0.8: (i) One can show that the closed unit ball {x € H | ||z|| < 1} is
compact with respect to the weak topology.
(i) If the Hilbert space is separable, then the weak topology on {x € H | ||z|| < 1}

is metrisable.

Remark 0.9: (i) Let (H,{(-,-)g) and (K, (-,-) k) be Hilbert spaces over K. For
each A € B(H, K), there is a unique operator A* € B(K, H) with

(Az,y)x = (z, A"y)u forallz € H,y € K.

We call A* the adjoint operator to A; with A’ € B(K', H') defined via A’f := fo A,
it is given as A* = j;' 0 A’ 0 jx and we have that ||A*| = || A].

2For the notation, refer to the proof of Proposition 7.4 in the lecture notes of Functional Analysis
1.



0 A brief reminder on Hilbert spaces and operators on Hilbert spaces

(ii) Let (H,(-,-)) be a Hilbert space over C. Then B(H) := B(H, H) is a Banach
algebra with respect to the operator norm ||-||, in particular ||ST|| < ||S||||T]| for
all S,T € B(H). The map * : B(H) — B(H), A~ A* satisfies

(

(ii) A € B(H) is called normal, if AA* = A*A.
(H) is called positive, if A = A* and (Az,z) >0 for all z € H.
(

(iv) V € B(H, K) is called isometry if one of the following equivalent statements
hold:
o V*V =idy,

o |Vz|x = ||z||m for all x € H,
o (Va,Vy)x = (z,y)y for all z,y € H.

(v) U € B(H, K) is called unitary if U*U = idg and UU* = idk or equivalently
if U is a surjective isometry.

(vi) P € B(H) is called (orthogonal) projection if P2 = P = P*. Then im(P) is
a closed linear subspace of H (in fact im(P) = ker(1 — P) where 1 = idy)
and H = im(P) @ ker(P).

Conversely: If K C H is a closed linear subspace, then

P.:H=Ka®oK"—H
r =221+ Ty H— T1

is an orthogonal projection; note that Px is the best approximation to x in
K.

(vii) V € B(H) is called partial isometry if one of the following equivalent condi-
tions holds:
e VV*V =V,
e V*V is a projection (initial projection),
e VV* is a projection (final projection),
e There is a closed linear subspace K C H such that V|x : K — H is an
isometry and Vg = 0.

3Check Functional Analysis I, Sheet 10, Exercise 3.
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Theorem 0.11 (Polar decomposition): For each T € B(H), there is a unique par-
tial isometry V € B(H) such that T = V|T| and ker(V') = ker(T) where we define
|T| := (T*T)= .

In fact, V*V is the projection onto ker(T)* and VV* is the projection onto
cl(im(T))

4Check Functional Analysis I, Sheet 11, Exercise 3.

11



1 Locally convex topologies on the
space of operators

Let (H,(-,-)) be a Hilbert space over K.

Definition 1.1: (i) The weak operator topology (WOT) on B(H) is the locally
convex topology that is defined by the family of seminorms

Dy B(H) — [0,00)
T — |(Tz,y)| for all x,y € H.

(ii) The strong operator topology (SOT) on B(H) is the locally convex topology
induced by the family of seminorms

pe : B(H) — [0,00)
T — ||Tz|| for all z,y € H.

(iii) The operator norm topology (ONT) on B(H) is the topology induced by the
operator norm ||-||.

Remark 1.2: We have Twor C Tsor € TonT; note that
[Tz, y)| < | Tz|[|lyll < [IT[|[yl] Vo,y € H,T € B(H).

Remark 1.3: (i) T — T* is continuous with respect to ONT and WOT, but is
not continuous with respect to SOT.

(ii) Multiplication - : B(H) x B(H) — B(H), (S,T) — ST is continuous with
respect to ONT but not continuous with respect to SOT or WOT.

(iii) However, for fixed S € B(H), both mappings T +— ST and T +— TS are
continuous with respect to SOT and WOT.

(iv) Furthermore: If (S, )nen, (Th)nen are sequences in B(H) that are strongly
convergent to S and T respectively, then (5,7}, ),en converges strongly to ST.
Indeed, (||[Snl)nen, (J|Tn]|)nen are bounded by the uniform boundedness principle,
so that

1S Thx — STz|| < ||Sulll(Thn — T)z|| + |(Sn, — S)z|| — 0 as n — oo.

If now the strong— is replaced by the weak topology, the statement is not valid
anymore.

Operator algebras: ONT ~» C*-algebras, WOT, SOT ~~ von Neumann algebras.

12



2 Unitisation of C'*-algebras

Definition 2.1: (i) A C*-algebra is a Banach algebra A (i.e. A is a C-algebra
that is complete and normed such that ||zy|| < ||z||||ly|| for all z,y € A) with
an involution, i.e. an anti-linear map

TA— A
r— "

such that z** = x, (vy)* = y*2* and ||z*z| = ||=]]?.

(ii) A is unital, if A is unital as an algebra (1 € A).
Motivation 2.2: (i) So far, we only considered unital C*-algebras such as
B(H) :={T: H — H linear, bounded},

for instance M, (C) = B(C") or C(X) := {f: X — C continuous} for a compact
metric space X. These are natural as well as unital examples and we have strong
theorems for them:

Theorem (First funamental theorem for C*-algebras): Let A be a commutative
and unital C*-algebra. Then A = C(X) for some compact metric space X.

In the proof of the Stone-Weierstrafl Theorem, we also needed the unit:

') N
\/f:\/lfgzleang"eleangneA

n=1 n=1

for0<f<1,feAandg:=1-f.

(ii) The compact operators K(H) := {T: H — H compact} C B(H) satisfy
(i), but not (ii). One checks, that K (H) is infact a C*-algebra.
More general: If A is a C*-algebra and I < A an ideal (two-sided and closed,
I* C I), then I is a (non-unital) C*-algebra. Hence, there are important examples
of non-unital C*-algebras.

(iii) Another important example (for a unital C*-algebra) was C(X) for a
compact metric space X. Why “compact”?

[[flloo == sup{[ f(#)

Let now X be locally compact (i.e. for all € X and U C X open with z € U,
there is a compact neighbourhood K C X such that z € K C U. Then || f]|c = o0
for f € C(X) is possible.

|t € X} < oo if X is compact.

13



2 Unitisation of C*-algebras

Consider

Co(X)
:={f: X — C continuous, vanishing at oo}
={f: X — C continuous, Ve > 03K C Xcompact : |f(t)| <eVte X\ K},
then || f]leec < oo for all f € Cyp(X). One can check that (Co(X),|||loo) is a
commutative (non-unital) C*-algebra.

(iv) We shall find ways of dealing with non-unital C*-algebras, for instance by
“adding a unit”: a minimal unit, a maximal unit or an approximitive unit. Amongst
other, we need to study how to find C*-norms.

Proposition 2.3: Let B be a unital C*-algebra.
(i) Let x € B with x = x*. Then r(z) = ||z||. (“the norm is algebraic”)

(ii) The C*-norm on B is unique.

(iii) If A is a unital *-Banach algebra such that ||x*|| = ||z|| and ||1]] = 1 and
p: A = B is a unital *-homomorphism (i.e. ¢ : A — B is an algebra-
homomorphism that satisfies p(x)* = p(z*)), then ||p(z)]| < ||z||.

(iv) On a unital *-Banach algebra, the C*-norm (if it exists) is the minimal norm.

Proof: (i) From Theorem 8.13, Functional Analysis I, we know that

r(z) = lim Yl = T a2 = T 5 el = o],

n—oo

as [|22" || = [|(x2")* (22")]| = |22 = ||z]|>""" via induction.

(ii) Let [||l1, ||-]|]2 be C*-norms on B. Then

Q)
Izl = llz*zlly = r(="2) = |2"2]|2 = |l2[l3.

(iii) We can estimate

le@)I = le(@*2)|s = r(e(z*2) < r(z*2) < la*z]la < o™ |allzla = 2l

because if A — p(y) = p(Al — y) is not invertible, then A1 — y is not invertible: If z
is invertible, then there is 271 such that zz~! = 1, thus p(2)p(z71) = 1.

(iv) The map

¢ (A, [|[IBanach norm) — (4, |||
T—

Cc* 7a1gcbra)

is a *-homomorphism, hence ||z||c+_aigebra = ||¢(2)|| < ||Z||Banach norm- [ |

INote that the spectral radius is defined as r(x) := max{|A| | A € Sp(z)} < ||z|| and the
spectrum Sp(z) := {A € C | A1 — z not invertible in B} C C is compact. Refer to Proposition
8.8 from Functional Analysis I.

14



Reminder 2.4 (Theorem of Gelfand-Naimark”): Let A be a commutative unital
C*-algebra. Then the Gelfand transformation

x: A —> C(Spec(A)) (Spec(A) :={¢: A — C unital algebra homomorphism})
rr— (#(p) = p(2))

is an isometric *-isomorphism.
Spec(A4) is compact, refer to Proposition 10.13 of Functional Analysis I.

Proof: y is a *-algebra homomorphism because ¢ is an algebra homomorphism;
Lemma 10.10 shows that y respects *. x is isometric (and thus injective), because

12112 = lIx(@"2)lloe = r(z"z) = [l2"2|| = |||

where you use Corollary 10.12 from Functional Analysis I for the second equality.
X is surjective because of the Stone-Weierstrafl Theorem. |

Remark 2.5: (i) Gelfand-Naimarks’s Theorem (from the 1940’s) is a milestone
in the theory of C*-algebras since:

(1) It justifies the view point of “non-commutative topology”.
(2) It yields the very useful tool of “functional calculus”.

Can we get (1) and (2) in the non-unital situation, too?

(ii) About “non-commutative topology” as a part of the “non-commutative
world”:

T HEORY N.C.ThEORY

N\ \ \ \ NouCOMAUT 1268 ;

X S?uc& R'S“M‘Lvl ~y {{’Y—)& X,_JMA\RI -~ A"o\/ %#a{

The noncommutiser.

Topology — C*-algebras
Measure theory — von Neumann algebras

Probability theory / Independce — Free Probability / Free Independence

2We call it the first fundamental theorem of C*-algebras. This is non-standard naming.
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2 Unitisation of C*-algebras

Differential Geometry — Noncommutative Geometry
Symmetry / Groups — Quantum symmetry / Quantum groups
Information theory — Quantum information

Complex analysis — Free Analysis
(iii) A dictionary of non-commutative topolgy:

topology (X locally compact) C*-algebra (Cy(X))
compact  unital
open subset  closed ideal
closed subset  quotient
metrisable  separable

connected  projectionless (no trivial projections)

See Gracia-Bondia, Vanilly, Figuenoa : Elements of non-commutative geometry,
Introduction to chapter 1 or end of chapter 3; see also Wegge-Olsen, Chapter 1.11.

(iv) History / Importance of C*-algebras:

e The name “C*-algebras” was introduced by Segal in 1947 where “C” stands
for “continuous” and “*” stands for “involution”.

e The study of C*-algebras may be seen as the study of operators on a Hilbert
space by algebraic means (refer to the Introduction of “C*-algebras and their
automorphism groups” by Pedersen). Reminder: Suppose that A C B(H) is
a subalgebra such that “z € A = z* € A” holds. Then cl. (4) € B(H) is a
C*-algebra and clgoT(4) and clwor(A) are von Neumann algebras. One can
show: There always is a faithful representation

m: A— B(H).
Lemma 2.6: (i) Let A and B be C*-algebras. Then A® B is again a C*-algebra
via
A® B :={(a,b)|a € A bec B}
with pointwise operations and ||(z,y)| := max{||z||, ||y|}.

(ii) Let A be a *-Banach algebra. Then
A={(z,\) |z € AN T}
is a *-Banach algebra with unit (0,1) with the operations

(@, A) + (g, ) == (z+y, A+ p),
(z, \)* == (z*,\)

16



(2, Ay, 1) := (zy + Ay + pa, Ap)
and the norm
e Wl o= el + AL
Proof: For the Banach property of the new algebra defined in (ii):

1z My )< Ml llllyll + MY+ Tl + M sl = G, D @l -

Note that (A, ||| 54) is a unital *-Banach algebra, but not a C*-algebra, since
(2, A)* (2, N)|| # [|(z, \)||?. We write A1 4+ := (2, \) for the elements in A making
the multiplication intuitive. The embedding

A A
x +— (x,0)

is an injective *-homomorphism.

Theorem 2.7: Let A be a C*-algebra. On A there is a unique norm turning it into
a C*-algebra. Then

x +— (z,0)
is isometric.

Proof: The uniqueness is granted by , we thus only have to show
exsistence.

(1) Let A be unital with unit e. Then

A—AaC
(z,\) — (Ae+x,A)

is a bijective unital *-algebra homomorphism (so A= A C as *-algebras). Hence
A has a C*-norm, namely the one of A ® C.

(2) Let A be non-unital. For x € A, write = A\ + a. Consider
L:A— B(A):={T: A— A bounded, linear}

where L, (b) := xb = Ab + ab for b € A. The linearity of L is clear. For the
boundedness we notice that

1L (0)]| = [lzb]la = [|Ab + ablla < (|A[ + [[a]l.4)[[b]| o

17



2 Unitisation of C*-algebras

and thus || Ly || < |A| + |la|| = |z||pa. Now put
2]l 4 := 1 Lall = sup{[[A1 + a)bl|a [ b € A, [|b] <1}
with £ = Al + a. We have ||a||; = ||a]|4 for all a € A, as
lalllla*[l = llal® = llaa™|| = || La(a*)]l < | Lalllla”]

and thus ||a]la < |la|| 5. On the other hand we know that ||la|| 5 = || L.|| < ||alla
from the proof that L, is bounded.

To show that ||-|| 4 is a norm, we only need to show that “||z||l4 = 0=z = 0"
holds. Let z € A such that z = Al +a, A\ # 0. Assume that ||L,|| = 0, hence
xb=0for all b € A and thus A\b+ab =0 for all b € A. Therefore, —\~'a is a unit
in A, since b = —A~lab. This is a contradiction as A was assumed to be non-unital.

Now we need to show that ||-|| 5 is submultiplicative: It holds that

[ Loyl = 1 Lo Lyll < [[La [l Lyl

(A, ||l z) is in fact a *-Banach algebra, but we will omit the proof of completeness.
Finally, ||-|| ; satisfies the C*-condition: Let z € A and € > 0. Thereisa b e A
with ||b|| < 1 such that ||zb||a > || L.|| — €, thus

1Lzl = €)* < flabllh = 6"z ablla < 6" allLavo(B)a < || Lavsll-

Therefore we get [|z]|% = [[Lz||* < || Loz = [l2*z| 5. In general it holds: [|z]|* <
|lz*z|| = [|z*z||, because
lll* < la*all < & llll = 2]l < 2" < [la*] = ||=]
= [lz]? < [l ]| < [l u

Remark 2.8: This is not the only unitisation of a C*-algebra:

(i) Another possibiliy comes from the multiplier algebra
M(A) := {(L, R) double centralisers}

with L, R € B(A) such that L(ab) = L(a)b, R(ab) = aR(b) and R(a)b =
aL(b). For instance let L;(a) := za and R;(a) := az, then (L,, R;) € M(A).
We have ||L|| = ||R||. M(A) is a C*-algebra via

(L1, Ry) + (L2, Ro) = (L1 + Lo, Ry + Ry)

AL, R) :== (AL, AR)

(L1, R1)(La, R2) == (L1 L2, RoRy)

(L, R)" := (R", L")
L*(a) := L(a")"

18



R*(a) == R(a")"
(L, )H LI = IR
= (id, id).
Then M(A) is a unital C*-algebra and

A— M(A)
x+—> (Ly, Ry)

is an isometric embedding.
(ii) In fact A C A and A C M(A) are ideals.
(iii) Let A, B be C*-algebras, B unital, A C B as an ideal. Then the diagrams

commute. In this sense, A is the minimal and M(A) is the maximal unitisa-
tion.

(iv) Let X be locally compact. Then
M(Cy(X)) = Cp(X) :={f: X — C continuous, bounded}

and
Co(X) = Co(X) @ €1 = C(X)

where X is the one point compactification.

(v) Let H be a Hilbert space with dim H = co. Then M(K(H)) = B(H) and
KH)=K(H)eCl1C B(H)
where 1 € B(H).
Remark 2.9: Let A, B be algebras, ¢: A — B be an algebra homomorphism. Then

P A—B
Al +ar— A+ ¢(a)
is a unital algebra homomorphism with ¢|4 = ¢. Hence is also

true for non-unital C*-algebras: Let p: A — B as in (iii), extend it
to ¢: A — B. Hence ||p(z)| < ||z|| for all x € A, thus ||¢(x)| < z| for all z € A.
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2 Unitisation of C*-algebras

Definition 2.10: Let A be a (not necessarily unital) C*-algebra, € A. Then we
define the spectrum of x as

Spuz if A is unital,
Sp(z) = { ba

Spj(z) if A is non-unital.

Remark 2.11: (i) If A is non-unital, then 0 € Sp(z) for all z € A.

(ii) If A is unital and v € A is unitary (i.e. v*u = uwu* = 1), then we have
Sp(u) C8t:={AeC ||\ =1} CC.

(iii) If z € A is selfadjoint (i.e. x = z*), then Sp(z) C R (even for 1 ¢ A).
(iv) If B C A is a C*-subalgebra and x € B, then Spg(x) = Sp4(x).

Definition 2.12: Let A be a commutative C*-algebra (possibly 1 ¢ A). Then we
define the spectrum of A as Spec(A) := Spec(A) \ {0} where

0:A—C
A4z r— A
(notice that 0|4 = 0).

Theorem 2.13: Let A be a commutative C*-algebra. Then Spec(A) is locally com-
pact and we have

R

A C(SpTC(A))
A Co(Spec(A))

Definition 2.14: Let A be a C*-algebra, M C A a subset. Then
C* (M) := smallest C*-algebra of A containing M
is called the enveloping C*-algebra of M.

Remark 2.15: (i) Let A, B be C*-algebras and M C A. Furthermore let
v, C*(M) — B be *-homomorphisms. Then it holds: If ¢|y = 9|,
then ¢ = ¢ (because {x € C*(M) | ¢(x) = ¢¥(x)} C A is a C*-algebra
containing M).

(ii) = € Aisnormal if and only if *x = xz*: We know that C*(x) is commutative
if and only if x is normal, as

C*(x) = cl({non-commutative polynomials in x,z*}).

Proposition 2.16: Let A be a C*-algebra and x € A be normal.
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(i) If A is unital, then
Spec(C*(z,1)) = Sp(x)
P — p(x)
18 a homeomorphism.
(ii) If A is possibly non-unital, C*(x) non-unital, then
Spec(C*(x)) — Sp(x) \ {0}
p — p(z)
is a homeomorphism.

Proof: (i) As in Functional Analysis I: ¢ — o(z) is injective by
and surjective, since Z(Spec(C*(z,1))) = Sp(z); it is continuous with respect to
the pointwise topolgy.

(ii) We have

Spec(C*(z, 1)) —— Sp(x) -

I .

Spec(C*(x)) \ {0}

Corollary 2.17: We have the following functional calculus
(i) Let A be a unital C*-algebra and let x € A be normal. Then
U: O(Sp(z)) — C*(z,1)
fr—f2)
is an isometric *-isomorphism mapping idgp(z) = x. Note that C*(x,1) =

C(Spec(C*(x,1))) = C(Sp(x)) by The theorem of Gelfand-Naimark (
) and . We have the diagramm

d~t: C* — C(Spec(C*(z,1))) — C(Sp(x))
r 58(g) = o) — foa

where

a: Sp(x) — Spec(C*(x, 1))
A— o, o(x)=A
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2 Unitisation of C*-algebras

(ii) Let A be non-unital and x € A be normal. Then we can extend the functional
calculus

®: Co(Sp(x)) = {f € C(Sp(x)) | f(0) =0} — C* ().
Some properties:

* homomorphism, s (f +9)(@) = f(x) + 9(@), (f9)(x) = f(x)g(a), () =

* Sp(f(x)) = f(Sp()), g continuous on f(Sp(z)) thus (g f)(z) = g(f(=)).
(see Sheet 3, Exercise 1)

If f is a polynomial, it is clear what f(z) is. If f is a continuous function, that is
not a polynomial, think of the Stone-Weierstrafl theorem.

Example: (i) Let € A be selfadjoint (i.e. x = 2*). Then Sp(x) C R. Consider
f+, f—: R = [0,00). Then for x; := fi(z) and z_ := f_(z) we have that x =
24 —2_ and x4, z_ are selfadjoint, too. Furthermore, we know that fi (Sp(z)) =
Sp(z4), £ (Sp(2)) = Sp(e_) C [0,00) and x4z = z_z4 = 0.

(ii) Let = be again selfadjoint with Sp(z) C [0,00). Then there is /x € A that
is selfadjoint with Sp(y/z) C [0, 00) and VT =

Proposition 2.18: Let A, B be C*-algebras and let ¢o: A — B be a *-homomorphism,
x € A be normal and f € C(Sp(z)) (or f € Co(Sp(z))). Then

Proof: Since ¢ is an algebra homomorphism, the statement is clear for polynomials.
Then use Stone-Weierstrafl approximation. |

Remark 2.19: This is the continous functional calculus (f continuous). There
is also a measurable functional calculus (f measurable, von Neumann algebras).
Furthermore there is an analytic— or holomorphic functional calculus, which
doesn’t require x to be normal.
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3 Positive elements in ('*-algebras

Definition 3.1: Let A be a C*-algebra and a € A. We say that a is positive (we
write a > 0), if a = a* and Sp(a) C [0,00). We write a < b, if b—a > 0.

Remark 3.2: Every positive element in a C*-algebra possesses a unique positive
square root /a € A.

Lemma 3.3: Let A be a unital C*-algebra, a € A be selfadjoint and let X > |al|.
Then a > 0 if and only if |A1 —al| < A.

Proof: This statement is clear for functions (sketch missing).
For the fomal proof: a > 0 holds if and only if Sp(a) C [0, c0) which holds if and
only if idgpq) > 0. idgp(q) = 0 holds if and only if

IAL = all = [ (AL - @)l = AL~ idsp(a)loe < . -

Proposition 3.4: If a,b > 0, then also a + b > 0.
Proof: Put A := [ja|| + ||b]| > ||a + b||. Then
A= (a+0)[ <|lllalll +all + [[l[blI1 = bl < [lal| + [Ib]] < A,
due toa >0 and b > 0 and . [ |
Lemma 3.5: Let A be a C*-algebra, x € A and —x*x > 0. Then z = 0.

Proof: Write z = z1 + iz where 21 = 3(z 4+ 2*) and 22 = & (x — z*), hence z;

and xq are selfadjoint (“decomposition in real— and imaginary part”). We then
have

¥ x4 xx* = (22 +iz12g — izoxy + 23) + (27 4 izowy — iz20 + 23) = 227 + 222,

thus zz* = 222 + 2223 — 2*z. Now 227 is positive, because r; = 2} and for
f(2) := 22 we have Sp(f(z1)) = f(Sp(x1)) C [0,00); the same holds for 223 and
—xx* is positive by assumption. Via , xx™ is positive. Now we have

Sp(z*x) U{0} = Sp(zz*) U {0} C [0,00), (refer to Sheet 3, Exercise 2),

on the other hand Sp(z*z) C (—o0, 0], because —za* is positive, thus Sp(z*z) = {0}
and via ||z*z| = r(z*z) = 0 we infer that x = 0. |

Proposition 3.6: Let A be a C*-algebra and a € A. Then the following are equiva-
lent:

(i) a is positive,
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3 Positive elements in C*-algebras

(ii) There is h € A with h = h* such that a = h?,

(iii) There is x € A such that a = x*x. (algebraic way to express positivity)

Proof: “(i) = (ii)”: We define h := \/a by

“(if) = (ifi)": Put 2 = h.

“(iii) = (i)”: Write z*x = u — v, where v := (z*z)4 > 0, v := (z*z)_ > 0. For
u,v it holds uv = vu = 0. Put y := xv. Then

—y*y = —vr*av = —v(u —v)v =13 >0
by f(Sp(v)) = Sp(f(v)). Now from we deduce that y = 0, thus v = 0
and consequently v = 0 (If [|[v2||2 = ||(v?)*(v?)|| = ||v*|| = 0, then v? = 0 and thus
|v]|? = ||v*v]| = ||[v?|| = 0). Now it holds z*zr = u — v = u > 0. [ |

Corollary 3.7: In a C*-algebra A, we put

Ay ={heA|lh=hr"h>0}={a"z |2 € A} CA ( )
A ={heA|lh=h"} CA,.

Then A, is a cone, 1. e.
(i) If h+ Ay and A >0, then Ah € AL,
(11) If hi,ho € A+7 then hy 4+ hg € A+.

Moreover AL N(—Ay) = {0} by and , Asa = Ay —A_
by (Chapter 2) and A, is closed by .

We observe that due to ||z*x|| = ||z||?, the positive elements play a special role
in the theory of C*-algebras.

Proposition 3.8: In a C*-algebra, the following holds:
(i) If a,b € Aga, c € A and a < b, then c*ac < c*be.
(ii) If 0 < a < b, then ||a|| <[]
(iii) If A is unital and 0 < a < b are invertible elements of A, then 0 < b1 <at,
)

(iv) For € R with0 <b <1 and 0 < a < b, it holds that 0 < af < b5. In
particular we have 0 < \/a < Vb.

Proof: (i) It holds ¢*bec — c*ac = ¢*(b — a)c = ¢*x*xzc > 0 for some x € A.

(ii) Without loss of generality let 1 € A. We view a and b as functions idgp(a)
and idgp(p), thus

lal| = inf{A >0 Al >a},  ||b] =inf{A>0]Al > b}.

Now we infer ||b||1 > b > a, hence [|b]| > ||a|.
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(iii) Because a > 0, it also holds a=1 > 0 by the functional calculus. Futhermore
the functional calculus gives that if @ > 1, then a=! < 1. Hence

(i)
1=vValavae ! <Valbval

and thus d := /ab='y/a = (Va=1bva=1)"! < 1. Again using (i), we get the
estimate b~ ! = Va—ldva—! < vVa'1Va 1 =a L

(iv) This proof is complicated and therefore left out. n

Remark 3.9: We do not have (iv) for 8 > 1, in particular 0 < a < b
but a? £ b may occur. We may even prove

(Elﬁ>1Vx,y€A:(O§x§y:>x5§yﬁ))é(ab:baVa,beA).

See also Sheet 3, Exercise 4 for other strange things.
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4 Approximate units, ideals, quotients

Definition 4.1: Let X be a topological space. A family (z))xen € X is a net, if A
is a filtration (i.e. we have an order “<” on A, such that A < X for all A € A, if
A< <A then A = pu, if Ay < Ao < A3, then Ay < A3 and for all A\, u € A, there is
v € A such that A < v and p <v).

(zx)xea converges to x € X, if for any neighbourhood U of x, there is a A\g € A
such that x) € U for all A > Ag.

Definition 4.2: Let A be a C*-algebra. An approzimate unit (uy)yea in A is a
net such that A < g = uy < wy, 0 <uy <1 (e [jup| < 1), and uyz — = and
zuy — x for all z € A.

Example 4.3: (i) Let A = Cy(R). Then the net (un)nyen, where uy is the

function
un

—N N

is an approximate unit.

(ii) Let A = K(H) for a separable Hilbert space. Then the net of projections
(tn)new, where u, (3o i€i) i= > ae; and (e;)iew is an orthonormal basis,
is an approximate unit.

Theorem 4.4: Let A be a C*-algebra (or an ideal in a C*-algebra). Then A has an
approximate unit.

Proof: (i) The set A:={h € A|h>0,|h| <1} is a filtration.

Proof: The order shall be the order of A;, h < h for all h € A is clear. “If
h < g < h, then g = h” follows from Ay N —A, = {0}. For f,g,h € A with
h<g<f,h<f follows from

Let now a,b € A. We need to find an element ¢ € A such that a < cand b < ec.
Put o := a(l —a)™! > 0 (note that 1 ¢ Sp(a), since |ja]| < 1). o is positive
because of t/(1 —t) > 0 on [0,1) and the functional calculus.

Using (iii) one can check that if (1 4+ y)~! < (1 +z)7!, then
(x(1+2)t=1-(1+2)"'<1-(1+y)t=y(1l+y)"' Hence

a=d(1+d) < (@ +V)(1+d+V) P =c

With what we have shown above we know that a < ¢ and b < ¢. Now ¢ > 0, since
a+b>0,1/(1+1t)>0and |c] <1since 1/(1+1t) <1, thus ¢ € A. [ ]
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(i) Leth>0,h€ Aandn € N. Then h(2 +h)™1 € A, h(1—h(L —h)™1) <

l .
Proof: Because of 0 < t¢/(t+ 1) <1forallt>0andt(1—t/(1—t) <2 forall
t > 0, the assertion follows from the functional calculus. |

(iii) L62t h 12 0, 9 €A, h(:+h)"t <g. Then |h — gh|* < L||h|| as well as
1= hgl[* < 7 Al

—_n

Proof: We have
I~ ghll? = 1AL~ g)?hl| < (1 — g)hl] < (1 K-~ )~ )hll < [l
for the second inequality we use
1-9)-(1-9)°=9(1-9)20 (for 0< g <1)
hence (1 —g)? < (1 — g), then use (1), (ii). [ |

Finally, let + € A and ¢ > 0. Put h := zz* > 0. By (ii), we know that
Ao :=h(: —h)"1 € A for n € N with 1 |||l < &2 Hence for all g € A with Ao < g:

[z = gz[|* = [|(1 = 9)h(1 — g)|| < [Ih — gh|/(1 + |lg]]),
if we put u, := g, we conclude x — gz — 0 for g —+ oco. Likewise z —zg — 0. W

Remark 4.5: If A is a separable C*-algebra (i.e. it has a dense countable subset),
then there is an approximate unit (un)nen, u1 < uz < ... (i.e. A is o-unital, i.e.
A is countable).

Definition 4.6: Let A be C*-algebra. [ is an ideal in A, if I C A is a closed linear
subspace such that AI, TA C I. We write I < A.
Example 4.7: (i) Let H be a Hilbert space. Then K(H) < B(H).

(ii) Let A be a C*-algebra. Then A < A using the notation from Chapter 2.

Lemma 4.8: Let A be a C*-algebra.

(i) If I< A, then I = I* (hence I is a C*-algebra),
(ii) If I« J <A, then I < A,
(iii) If I<A, I C A and (ux)aea is an approzimate unit of I, then (ux)aea is not
an approrimate unit for A
Proof: (i) Let (ux)aea be an approximate unit for I and = € I. Then uyz — =
and because * is continuous and [ is closed, then I 3 x*uy = (uyx)* — .

(ii) Let (ux)rea be an approximate unit for I, x € I and a € A. Then I >
ruya — xa, thus xa € I, ax € I.
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4 Approximate units, ideals, quotients

(iii) Assume (u))rea was also an approximate unit for A. Then for all a € A :
I 5> uya — a, hence I = A which is a contradiction. |

Theorem 4.9: Let A be a C*-algebra and I < A. Then A/I is a C*-algebra.
Proof: A/I is a Banach algebra with the norm
&) := inf{[lz + 2| | z € I}

for & € A/I. Tt has an involution (&)* := (2*)*® (check that we have “& = g =
r—yel=(x—y*el= (2% = (y)*”). It remains to be shown that
&*z] > ||12]* (due to , “<” then follows).

Let (ux)xen be an approzimate unit for I and let x € A. Then ||| = lim||z —
urz||.

Proof: Let ¢ > 0. We find z € I such that ||z + z|| < ||Z| + € and we find \g € A
such that ||z —uxz|| < e for all A > A\g. Then we have

] < [l —wxa] < [I(1—ux)(@+2) [ + [[(1 - ua)z]|
<= uallllz + 2l + [lz — uazll < [|2]] + 2¢

as ||z + z|| < ||| + € and ||z — uxz| < € by assumption. [ |
Now let x € A. Then

I2]* = limlz — wxz]|

= lim||(1 — ux)z*z(1 — uy)||

= lim||(1 — ux)(z"z + 2)(1 — uy)|| (as z € I and upz — 2z — 0)
< [lz*e + 2.
By taking the Infimum over z € I, we thus get |#]|? < ||4*Z]. |

Proposition 4.10: Let A, B be C*-algebras and let p: A — B be a *-homomorphism.

(i) If ¢ is injective, then ¢ is isometric.
(ii) @(A) is a C*-algebra and A/ker(p) = o(A).

Proof: (i) We need to show that |¢(z*x)| = ||z*z]|, then ||¢(x)||* = [|p(z*z)| =
|lz*z|| = ||=||?. Let’s assume that ¢ is isometric, i.e. ||p(z*z)| < ||z*z| for some
x € A. Consider f: R — R with 0 < f < 1, f|(||m*w||,oo) =1 and f|[0,|\tp(w*w)”] =0
(refer to ). Then

p(f(e"x)) = flp(a"x)) =0
where 0 # ||f(z*2)| = = 1, since r(z*x) = |[z*z||, hence |z*z| €
Sp(z*z) C [0,00) (in principle: ||z*z|| € Sp(z*z) or —|z*z| € Sp(z*z)) and
If(e(@*z))|l = || flj0,)0(z*2)[]llcc = 0, thus ¢ is not injective.
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ﬂ

plare) |z z R

Sketch of the function f as mentioned in part (i) of the proof.

(ii) We have the diagramm

A/ker(p)

where ¢(&) := p(z) is a well-defined *-homomorphism. Note that ker(¢) < A. By

part (i), ¢ is isometric, therefore p(A) = p(A/ker(y)) is complete and thus a
C*-algebra. ]

Remark 4.11 (Homological properties of C*-algebras): The sequence
0—I—A—B—0

is exact if and only if <A and B A/I.
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5 Positive linear functionals and the
GNS construction

Definition 5.1: Let A be a C*-algebra and ¢: A — C be a linear functional. ¢ is
called positive (in signs ¢ > 0), if p(z) > 0 for all = > 0.

7

A positive linear functional preserves the order, i.e. “z < y = ¢(x) < ¢(y)
holds.

Example 5.2: (i) Let A = C([0,1]). Then ¢.(f) := f(t) or ¢(f) := fol f(t)dt
are positive functionals. More generally, we have the correspondence:

{positive functionals on A} —+ {Radon measures on [0, 1]}
p — pwith o(f) = [ fdu.
(ii) Let A= M, (C). Then
tr: A— C
(i) 1<ij<n — Dy G
is a positive linear functional.
(i) Let A= B(H) and £ € H. Then g¢(x) := (2, &) is a positive functional.

Lemma 5.3: Let A be a C*-algebra and ¢: A — C be positive. Then (x,y) =
p(y*z) is a positive sesquilinear form.

Proposition 5.4: Let A be a C*-algebra, p: A — C be positive.

(i) ¢ is bounded (hence continuous),

(ii) ¢ is involutive, i. e. p(z*) = p(x) and |p(x)|* < ||@||o(x*z) for all z € A.

Proof: (i) (1) ¢ is bounded on S:={zx € A|xz>0,|z| <1}
Proof: Assume ¢ was not bounded on S. Then there was a sequence (ay)neny € S

such that ¢(a,) >2". Then a =Y 5+an = 0 by (Corollary 3.7), but

Al
p(a) > 90(227@70 >N

n=1

which was a contradiction. [ |

(2) For an arbitrary z € A write z = (Re(2))+—(Re(z)_+i((Im(2))+—(Im(z))-)
as a linear combination of four positive elements with norm smaller or equal to the
norm of z. Thus ||p(z)] < 4K||z||, where K is the bound from (1).
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(ii) By (Lemma 5.3), (-,-) is a positive sesquilinear form, hence the polarisation
identity is satisfied (Theorem 5.7, Funtional Analaysis I). Hence (z,y) = (y,x).
Thus

p(a”) = p(zun) = (ur, z) = (z,ur) = p(uiz) = p(u, ) = (),
and moreover

[ lp(uaz)® = [z, ua)? < (2, 2)(ux, un) = p(2" @) (u3). u

o ()

Proposition 5.5: Let A be a C*-algebra and p: A — C be continuous and linear.
Then the following are equivalent:

(i) ¢ is positive,

(ii) For all approzimate units (ux)aea C A it holds ||| = lim ¢(uy),

(iii) There is an approximate unit (ux)ren C A such that ||¢|| = lim p(uy).
Proof: “(i) = (ii)”: Without loss of generality, let ||| = 1. Then (p(uxr))rea C C

is a bounded, monontonically increasing net in Ry, hence ¢(uy) T« <1 for some
a € R. For z € A, ||z]| <1 we have

lo(@)?  lp(uaz)* < p(u})p(z"z) < plur)p(z™z) < @

because of 0 < uy < w3 and the functional calculus. Since ||| =1 we find z,, € A,
|z, || < 1 such that a > [p(x,)|> = 1, thus a = 1 = ||¢||. “(ii) = (iii)” is obviously
true.

“(iii) = (i)”: Without loss of generality, let ||| = 1, thus ¢(uy) — 1.

(1) For x € A selfadjoint, ||z| < 1, we have o(x) € R.

Proof: Let p(z) = a + i, without loss of generality 8 < 0. Assume 3 < 0. Then
for all n € IN we have

||z — inuAH2 = ||[(z + inuy)(z — inuy)|| = Hx2 + n2u§\ — in(zuyurz)||
<14 n? + nljzuy — uz.

Therefore, |5]? + 2|8|n + n? = [Im(p(x) —in)|? < |p(z) —in|? + |p(z — inuy)|.
Using the result of the above calulcation, we obtain

1B 4 2|B|n + n® <14 n” + nljzuy — upz|],
thus 2|8|n < 1 —|B3|%, hence 8 = 0, which is a contradiction. [ |

(2) Let now z > 0, ||z|| < 1. Then —1 < uy —x < 1 (where the last inequality
holds because we have “uy < 1= 1—uy > 0= 1—uy+z > 07), hence ||luy—z| < 1.
By (i) we thus have

L—op(r) <1 —@(@)] + lp(ur —1)| <1
which implies ¢(z) > 0. [ |
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5 Positive linear functionals and the GNS construction

Corollary 5.6: Let A be a unital C*-algebra, ¢: A — C be continuous and linear.
© 1s positive if and only if p(1) = |l¢||.

Corollary 5.7: Let ¢, ¢’ be two positive functional. Then || + ¢'|| = |lo| + [|¢'|l.
Proof: We have

ol + @[] <= @(ur) 4+ @' (ur) = (@ + @) (ur) = llo + ¢l u

Definition 5.8: A state on a C*-algebra is a positive linear functional ¢ with
el = 1.

Remark 5.9: Let A be a unital C*-algebra. ¢ is a state on A if and only if ¢ is
positive and (1) = 1.

Reminder 5.10 (Theorem of Hahn-Banach'): Let E be a normed C-vector space,
F C E be a linear subspace and f: F' — C continuous and linear. Then there is
continuous and linear f: E — € such that ||f|| = ||f]| and f|r = f

Theorem 5.11: Let A be a C*-algebra, x € A be normal. Then we find a state
p: A — C such that |p(z)| = ||z||.

Proof: By the Gelfand isomorphism we find a character ¢o: C*(x,1) — C such
that ¢o(1) = 1 with |po(2)| = |2(v0)| = |Z]|ec = ||z]|. In particular, g is linear
and continuous (|¢ol = 1). By the Hahn-Banach theorem (

we find an extension @g: A — C that is linear and continuous and fulfills that

[poll = I@oll = 1 = o(1) = @o(1).
By we know that ¢p > 0 and thus ¢ := @yl is positive and it
holds that |p(z)| = Jl2ll, ]l = 1. .

Definition 5.12: Let H, Hy, Ho, (H;);c; be Hilbert spaces and A be a C*-algebra.

(i) A representation of A on H is a *-homomorphism 7: A — B(H).

(ii) Two representations (w1, Hy), (w2, Ha) are equivalent, if there is a unitary
map U: Hy — Hj such that ma(z) = Uy, (x)U* for all z € A.
(iii) Let (ms, H;)ier be representations of A. Then (,; mi, @D, Hi) is a repre-

sentation on €, ; H; given by

(P i) @ = m(@)g je .
iel
(iv) A representation 7 is non-degenerate if cl(n(A)H) = H.

(v) A representation 7 is cyclic if there is £ € H (the so called cyclic vector) such
that cl(7(A)¢) = H.

IRefer to the Functional Analysis I lecture notes, Chapter 2.
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Every cyclic representation is in particular non-degenerate.
Remark 5.13: (i) Every representation is a direct sum of a non-degenerate and
a zero representation.

(ii) Every non-degenerate representation is a direct sum of cyclic representations.

Lemma 5.14: Let (71, H1,&1) and (mwe, Ha, &) be two cyclic representations and
f1, fa: A — C be positive linear functionals with f;(xz) = (m;(x)&, &) fori=1,2.
If f1 = fa holds, then there is a unitary U: Hy — Hy with U& = & such that
mo(x) = Um (z)U*.

Proof: See Sheet 4, Exercise 3. |

Theorem 5.15 (GNS-Construction): Let f be a state on a C*-algebra A. Then
there is a unique (up to unitary equivalence) cyclic representation (w¢, Hy, &) such

that f(x) = (mf(2)&s,&r)-
Proof: (1) Firstly, given the data A and f, we want to construct the Hilbert
space for the representation of A:

o (x,y)5 = f(y*x) is a positive sesquilinear form on A x A
o Put Ny :={x € A|(x,z); =0} and define K; := A/N.

Then K is a pre-Hilbert space: For the quotient map v: A — A/N, the expression
(v(x),v(y)) :== (z,y) s is well-defined and -y continuous because

Iy (@)1 = (y(@), (@) = fz*2) < o]

e Put Hy := cl,(Ky). Hy is then a Hilbert space with the inner product
(@), (y) = fly ).

(2) Secondly, we want to construct the representation of A on Hy:

e Define
ﬂ'?(l‘): Ky — Hy
Y(y) — (z,9).
Then 7T]0c is continuous:
173 @)y W)1* = v (ay)|I? = flya*zy) < |=*z| f(y*y) = [zl v()]?

and thus |7} (z)|| < [|z. Also, this proves thast 79(x) is well-defined (If
Y(y) = 7(2), then [|y(zy) — y(22)|? = Iy(z(y — )| < [lz[?Iv(y — 2)|I* = 0).

e Extend 7} to ms(x): Hy — Hy, then it holds [|7s(z)|| < ||z|| and due to
W?c(x)ﬂ'? (y) = w?(my), we also have 7y (x)ms(y) = mr(zy).
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5 Positive linear functionals and the GNS construction

° w?c is a *-homomorphism, because

7 (@*) = (mp(2)y(y),v(2)) = f(z"zy) = f((z*2)"y)
= (Y(v),v(z*2)) = 7} (z*)y(2) = 7P (x)".

This property transfers to the limit, thus 7y is a *-homomorphism.
(3) Thirdly, we want to construct the cyclic vector £;:

o Let (ur)rea be an approximate unit for A. Put §; := limy(uy). The limit
lim y(uy) exists: Let A > p. Then

Iy(ux) = y(ua)l* = f((ux —wa))?) < flux —w,) <e

for X, p large, as we have uy > u,, 1 < uy > uy —u, > 0 and via the
functional calculus, we get (uy — u,)? < (ux — u,)? and thus (y(ua))aea is a
Cauchy-net.

o {5 is cyclic, as for € A we have 7f(x)y(ur) = vy(xur) — ~v(z), hence
mr(x)€r = y(z) for all y(x) € K.
(4) Fourthly, we have

(mr(x)€y, ) = lim(mp(z)y(ur),v(ur)) = lim f(urzuy) = f(z).

(5) Finally, the uniqueness follows from . [ |

Corollary 5.16 (Second Fundamental Theorem of C*-algebras): FEvery C*-algebra
A admits a faithful (i. e. injective) representation n: A — B(H). Hence, A is
isomorphic to a C*-subalgebra of B(H).

Of the above Corollary we can make “Every (abstractly defined) C*-algebra
has a concrete representation.” or “The abstract (Chapter 2) and the concrete
definition (as ||-||-closed *-subalgebra of B(H) for a Hilbert space H) coincide.”

Proof: Put 7 := @f state on A Tf- We now need to show, that = is faithful; let
therefore z € A\ {0}. By (Theorem 5.11) we find a state f such that f(z*z) = ||z2.

By , we get that ||7p(2)&f||? = f(a*x) = ||z]|? # 0, so my(x) # 0 and
thus 7(x) # 0 and 7 is faithful. |
Remark 5.17: If A is separable, then H in may be chosen to be
separable.

Proof: Let {z1,22,...,} C A be dense and countable. We then only need to check
that f,(zhz,) = [|2,]|?. Then put m:= @, T/fn- |

Remark 5.18: The GNS-Construction ( ) using pure states to irre-
ducible representations.

34



(i) A representation m: A — H is called irreducible, if one of the following
conditions is satisfied:
(1) 7 =0,
(2) dim H =1,
(3) The only closed subspaces K of H such that m(A)K C K (in this case it also
holds 7(A)K+ C K1) are 0 and H.
(4) w(A) = C1, where w(A) = {z € B(H) | zn(y) = n(y)xVy € A} is the so
called commutant.
(5) Every vector 0 # £ € H is cyclic.
(3) - (5) are equivalent conditions.
(ii) If dim H < oo, then 7 = m @ --- @& 7, where the m; (1 < i < n) are
irriducible.
(iii) f: A — C is called a pure state, if it holds: “0 < g < f= IA€[0,1]: g =
Af” If f is a pure state, then (ws, Hy, &) is irreducible.
(iv) For all 0 # = € A there is an irriducible representation 7: A — H such that

[ (@)l = -
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6 von Neumann algebras

Motivation 6.1: In we have introduced several locally convex topolo-
gies on B(H). A *-subalgebra A C B(H) that is closed with respect to the operator
norm topology is a C*-algebra; in fact, each C*-algebra arises in this way for a
suitable Hilbert space H (see ). What happens, if A is instead
required to be closed with respect to the weak— or the strong operator topology?

Let in the following (H, (-,-)) be a complex Hilbert space.
Lemma 6.2: Let o: B(H) — C be a linear functional. Then the following are

equivalent:
(i) ¢ is continuous with respect to the weak operator topology.
(ii) @ is continuous with respect to the strong operator topology.

(iii) There ism € N and there are &1,...,&n, M,...,Mn € H such that

n

p(x) = Z(ﬂfﬁunﬁ forallx € H.

i=1
Proof: Exercise! [ |

Theorem 6.3: Let C C B(H) be a convex set. Then C' is weakly closed if and only
if C is strongly closed.

The proof of this theorem relies on and the following variant of the
Hahn-Banach separation theorem, which can be derived from Theorem 2.7 from
the Functional Analysis I lecture notes.

Theorem 6.4 (Hahn-Banach): Let (X, %) be a locally convex topological C-vector
space. Suppose that C C X is a closed convex subset and xy € X \ C. Then there
exists ¢ € (X, T)*" and v € R such that

Re(p(z)) < v < Re(p(xzo)) forallz € C.

Proof (of ): “=7 is clear, since Twor C Tsor (see (Remark 1.2)).

“<": Suppose that C' is strongly closed. We assume C' C clwor(C), i. e. there is
X € CIWOT(C) \ C. Thus by , we find p € (B(H),‘ISOT)* and v € R,
such that

Re(p(x)) < v < Re(p(zg)) for all z € C.

'In the following we will denote with (X,¥)* the set
{f:X — C| f continuous with respect to T}.
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6 von Neumann algebras

Due to , p is also weakly continuous and thus we infer that
Re(p(z)) < v < Re(p(zo)) for all x € clwor(C),
which contradicts zg € clwor(C). Hence C = clwor(C), i.e. C is weakly closed.l

Recall that in any topological vector space the closure of a convex set is again
convex. Thus, we deduce from

Corollary 6.5: Let C' C B(H) be a conver set. Then clwor(C) = clsor(C).

Proof: e clwor(C) is convex and weakly closed, thus by it holds
that clwor(C) is strongly closed and thus clwor(C) 2 clsor(C).

e clsor(C) is convex and strongly closed, thus by it holds that
clsor(C) is weakly closed and thus clsor(C) 2 clwor(C). [ |

Thus, since each *-subalgebra A of B(H) is in particular convex, we see that
clwor(A) = clsor(A). For unital A, i.e. 1 =idy € A, we can handle this huge
analytic object by purely algebraic means.

Definition 6.6: Let S C B(H) be any subset. We call
(i) ":=={ye B(H) | Yx € S: zy = yx} the commutant of S,
(if) S” := (S") the bicommutant— or double commutant of S.
Lemma 6.7: Let S C B(H) be any subset.

(i) S’ is a weakly (and strongly) closed unital subalgebra of B(H).

(if) If S = S* (i.e. if x € S, then x* € S), then S’ is a weakly closed (and
strongly) closed unital *-subalgebra of B(H).

(iii) We have S C 8" and S8"' :=(S") = S'. If T C B(H) is another subset, then
SCT = T Cg.
Proof: Exercise! [ |

tells us that each *-algebra A C B(H) sits inside the weakly (and
strongly) closed unital *-subalgebra A” C B(H); therefore

A g CISOT(A) Q ClWOT(A) g A/I.
We can say more, if A is unital.

Theorem 6.8 (von Neumann’s bicommutant theorem): Let M C B(H) be a unital
*-subalgebra. Then the following statements are equivalent:

(i) M =M" (algebraic condition)
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(ii) M is weakly closed. (analytic condition)

(iii) M is strongly closed. (analytic condition)
Definition 6.9: Let M C B(H) be a unital *-subalgebra. If M satisfies the equiva-
lent conditions in , then M is called a von Neumann algebra (acting
on H).

The theory of von Neumann algebras began with a series of groundbreaking
papers “On rings of operators” by Francis J. Murray and John von Neumann that
appeared 1936 to 1943.

Theorem 6.10: Let A C B(H) be a unital *-subalgebra. Then A” C clsor(A) and
thus ( ) we have the equalities

clsor(A4) = clwor(A) = A”.
Proof: Take y € A”. We have to show that y € clsor(A), which means that
Ve>0, &,...,6p € HIx € At |lyé; — xéil|< e Vi=1,...,n.
@ Consider the case n = 1. Let € > 0 and £ € H be be given. Put
Hy:=cl(Af) :=cl({z¢ |z € A}) C H

and let p be the orthogonal projection onto Hy. Then p € A’: We clearly have
aHy C Hy for all @ € A and also aHg- C Hg- for all @ € A, since for ¢ € Hy,
n € H and a € A we have

(a,m) = (¢,a™n) = 0.
Thus for all ¢ € Hg-, n € Hy and a € A, we get that
ap(n + ¢) = an = p(an) = p(an + a¢) = pa(n + ¢),

thus ap = pa for all a € A.
Now, since y € A”, we see that py = yp, which implies

yHo = ypHy = pyHy C Hy.

Because 1 € A implies £ = 1€ € Hy, we get y&y € Hy = cl(AE), i.e. thereisz € A
such that ||y& — €| < e.
@) The case of n vectors &1,...,&, € H will be reduced to @) by a matriz trick.
Consider H" = @;_, H 3 £ := (&1,...,&,) " and a mapping
m: A— B(H)"
a— 7(a),
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6 von Neumann algebras

where 7(a) = diag(a,...,a), i.e. 7(a)(n,...,nn)" = (am,...,an;)T. Then
w(A) is a unital *-subalgebra of B(H™) and we have m(y) € w(A)”; note that
7T(A)/ = {(ai)j)lgid‘gn | V’L,] =1,...,n: aij € A/}

Thus, applying (D to m(y) € 7(A)” and £ € H" yields « € A such that

Im(y)€ — m(@)Ell <,

ie ||y& —a&|| <efori=1,...,n. [ |
Proof (of ): “(i) = (ii)”: is the statement that was shown in ,
“(ii) = (iii)” is a consequence of Twor C Tsor (as stated in ) and “(iii)
= (i)” is the statement . [ |

Definition 6.11: Let S C B(H) be any subset. Put §* := {z* | x € S}. Then
vN(S) := (S U S*)" is called the von Neumman algebra generated by S; due to
Exercise 1 (d), Sheet 5, this is the smallest von Neumann algebra M C B(H) that
contains S.

Remark 6.12: (i) Every von Neumann algebra M C B(H) is also closed with
respect to the operator norm topology (see ) and thus a C*-algebra.
Their general theories, however, are wildly different.

(ii) Obvious examples of von Neumann algebras are B(H) and C1 C B(H). Tt
is less obvious that there are other non-trivial examples.
(iif) For any subset S = S5* C B(H), S’ is a von Neumann algebra.

(iv) Von Neumann algebras are closed under the measurable functional calculus
(see Theorem 11.5 in the Functional Analysis I lecture notes): If M C B(H) is a von
Neumann algebra and z € M a normal operator, then the continuous functional
calculus

o: C(Sp(z)) — C*(z,1) C B(H)
admits a unique extension
®: By(Sp(x)) — W*(z,1) = vN(z) C M C B(H)

such that ® is a *-homomorphism with

o [ (/)| < [Iflloo for all f € By(Sp(x)),
e (f, — f pointwise, f bounded) = (®(f,) — ®(f) in WOT).

In particular, we know that all spectral projections E,(B) = ®(xp) for Borel
subsets B C Sp(z) belong to vN(z) and hence to M. Therefore, von Neumann
algebras contain — in contrast to C*-algebras — many projections; note that there
are C*-algebras that contain no projections except 0 and 1.

It follows that clont({{p € M | p projection})) = M: Indeed, if z € M is
selfadjoint, we may approximate idgy(,) € C(Sp(x)) uniformly by step functions.
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Lemma 6.13: Let M C B(H) be a von Neumann algebra and x € B(H). Then
x € M holds if and only if ux = zu for all unitary v € M’.

Proof: “=": This is trivial, since M = M".
“«<": Every element in a C*-algebra C is a linear combination of (at most four)
unitaries.

Proof: Let a = a* € C with [la]| < 1. Then we have the decomposition a = 1 (u-+u*)
where u := a 4+ iv/1 — a?. Each a can be written as a = Re(a) + iIm(a) where

Re(a) = %(a—&—a*) and Im(a) = %(a —a"). -

Applying this to M = M’, yields that yr = zy holds for all y € M’, thus
ze (MY =M"=M. n

Corollary 6.14 (Polar decomposition in von Neumann algebras): Let M C B(H)
be a von Neumann algebra and x € M. Consider the polar decomposition x = v|z|,
|| = (z*2)"?, of x in B(H), where v € B(H) is a partial isometry with the
property ker(v) = ker(z) (see (Theorem 0.11)). Then v € M (and clearly |x| € M ).
Proof: Let u € M’ be a unitary. Then:

x = uzu® = wv|zju*
= wou™|z| (lx| € M and uy = yu for all y € M)

= wou’|z|.
Now uvu* is a partial isometry with
ker(uvu™) = uker(v) = uker(z) = ker(uzu™) = ker(z).

Thus, the uniqueness of the polar decomposition yields that v = uvu*™ and thus
that vu = uv. By , we get that v € M. |
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7 The Kaplansky density theorem

Motivation 7.1: Let A C B(H) be a *-subalgebra. Consider the strong closure
B :=clsor(A) € B(H) of A. Then, for each x € B we find a net (x))xep in 4
such that )y —soT z. In general, there is no reason, why (||zx||)xea should be
bounded, but can we make a better choice such that supycy ||zall < ||lz]|?

Theorem 7.2: Let f: R — C be a continuous and bounded function. Then f
is SOT-continuous, i.e., if xx —sor « in B(H) and x\ = x5, © = z*, then

f(@x) =sor f(2).
Proof: (D Consider first the case f € Co(R) C Cp(R). Put
Fo:={f € Co(R) | f is SOT-continuous}.

Then Fy C Cp(R) is a subalgebra of Cy(R) that is closed with respect to the sup-
norm (Check!). Furthermore, since x — z* is continous with respect to SOT on the
set of normal operators (note that € B(H) is normal if and only if ||z&|| = ||=*¢||
for all £ € H), we have that Fy forms a *-subalgebra of Cp(R). Consider now

g:R—C
t

t— ——.
1+ ¢t2

Clearly, g € Co(R). Claim: g € Fy.

Proof: Take a net (z))xea of selfadjoint operators in B(H) that converges to
x = a* € B(H) with respect to SOT. Then

g9(xx) — g()

=ay(14+23)"' -2l +2?)7!

=(1+23)" " [ea(1+2%) — (1 —23)z] (14277
— (U+23) " [(n — 2) + aa( = aa)a] (14 22) !

so that for each £ € H we have:
lg(zA)€ — g(x)€ll
<@+ 23) 7 Hea — )1+ 2%) 7R+ (1 +23) (e — 2)z(1 +a?) 7|

<11+ 23) Ml — 2) (14 22) 7Ll + 1+ 2R) "l ex — @)1 +22) e
<1 =0 <1 =0

because of the properties of the functional calculus and (1+22) ¢, z(1+2?)"'¢ € H
are fixed, i.e. g(x)) —soT g(). [ |
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Analogously, f € Fy where f: R — C, t — ﬁ Note that {f, g} separates the

points of R and f(¢) > 0 for all ¢ € R and thus, by the Stone-Weierstrafl theorem
for Cp(R), we get that Fy = Co(R).
@ Cosider now the case f € Cp(R). Put

F:={feC(R)| fis SOT continuous}.

Note that for hq, ho € F, where one h; is bounded, it holds that hihs is bounded.
Thus in particular: If h € F is bounded, then idh € F.

Take h € Cy(R). Then, with f, g constructed like in (D), we have hf, hg € F.
Since f +idg = 1, we may deduce that

h=h(f+1idg) = hf +id(hg) € F

with the above arguments. |

Let S C B(H) be any subset. In the following we will denote with

Ssa i={z €S |z"=xa}

the selfadjoint part of S.
Theorem 7.3 (Kaplansky density theorem): Let A C B(H) be a *-algebra. Con-
sider B := clsor(A) € B(H). Then the following statements holds true:

(i) CISOT(Asa) = Bsa,

(i) clsor({z € Asa | [|z]| < 1}) ={z € Bso | [|z| < 1},

(il) clsor({z € Al |z|| <1}) ={z € B [lz]| < 1}.

Proof: (i) Since Ay, is convex, we have by that clsor(Asq) =
clwor(Asq). Now, since x — z* is weakly continuous, we get that clwor(Ase) C
Bg,. Conversely, if x € By, C B is given, then we find a net (x))xea in A such
that x —sor . Then ) —wor and thus 2} —wor 2* = 2. Hence Ay, >
Re(zy) —»wor = and thus z € clwor(4sq). In summary we have clsor(4sa) =
CIWOT(Asa) = B.

(if) Take x € Bs, with ||z|| < 1. Due to (i), we find a net (zx)xea in Asq with
zx —sot 2. Consider f € Cy(R) that is defined by

it te[-1,1]
f(t)_{i, t¢[—1,1].

From it follows that (cloxt(4))s 3 f(23) —sor f(x) = &, where
we used that Sp(x) C [—1,1], and || f(z)|| < 1 since || f|lcc < 1. Now, we have: For
all A € A and all n € N there is y, » € A,, such that

1
lyanll <1 and [[f(2x) —yanl < .

Thus, (Yxn)reanen is a net in Ay, that converges to z in the strong operator
topology and satisfies ||yx,.|| < 1. This shows “2”. We leave “C” as an exercise.
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7 The Kaplansky density theorem

(iii) Take x € B with ||z| < 1. Consider

y = ( IO* 0 ) € My(B) C B(H @ H).

In fact, y € Ma(B)s,. Note that a net (yx)xea with
n=(4 1 ) ens)
is strongly convergent to
112
y= < g2l 22 ) € M>(B)

if and only if ¥/ —sor y* for all 1 < i,j < 2. Thus, Ma(B) = clsor(Ma(A)).
Due to (ii), we find a net (yx)rea in Ma(A)s, such that

11 12
Y Yy _ _ 0 =
(y?\l y/2\2>—y>\_>SOTy—(x* 0)

and [lyx|| < 1. Hence z := yi* —sor = and ||z, || < 1. The latter follows from

(m(2)-(1) =t

for all £&,m € H. This shows the inclusion “2”. Again, we leave “C” as an exercise.
|

Remark 7.4: (i) Note that (ii) in is not a trivial consequence of
(iii) as « — x* is not continuous with respect to SOT (see (Remark 1.3)).

(ii) One can show that in the situation of also
clsor({z € A positive | ||z|| < 1}) = {z € B positive | ||z|| < 1}
and, if A’ is a C*-algebra:
clsor({z € A’ unitary}) = { € B | z unitary}.

Corollary 7.5: Let A C B(H) be a *-algebra. Then, for each x € B := clgor(A4),
we find a net (xx)rea tn A such that

zx —sor  and sup|zxl| < [z
AEA
If x is selfadjoint, then (xx)xea can be chosen to consist of selfadjoint operators
-

If the underlying Hilbert space (H,(-,-)) is separable, then there exists even a
sequence (n)neN tn A with the above properties.

Proof: Exercise! [
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8 Abelian von Neumann algebras

Motivation 8.1: Let A be a commutative unital C*-algebra. According to the
Gelfand-Naimark Theorem (Theorem 10.16 from the Functional Analysis I lecture
notes), the Gelfand transformation

x: A — C(Spec(4)), x+—2

where Z(p) := (z), gives an isometric *-isomorphism, i.e., A is of the form C(K)
for some compact Hausdorff space K. Therefore, the theory of C*-algebras can be
seen as a kind of “non-commutative topology”.

Analogously, von Neumann algebra theory is considered as a kind of “non-
commutative measure theory”; in order to understand this point of view, we study
here abelian (i. e., commutative) von Neumann algebras.

Remark 8.2: Since every abelian von Neumann algebra is particular a commutative
C*-algebra, it is isomorphic to C(K) for some compact Hausdorff space K; this
space, however, is extremally disconnected (i.e., the closure of every open set is
again open). This highlights that von Neumann algebras are rather exceptional
among C*-algebras.

Definition 8.3: Let M C B(H) be a von Neumann algebra and let 0 # £ € H be
given. We say that

(i) & is cyclic for M, if M§ = {x€ |z € M} is dense in H,
(ii) & is separating for M, if € # 0 for all 0 £z € M.

Theorem 8.4: Let M C B(H) be a von Neumann algebra and let 0 # & € H be
given. Then & is cyclic for M if and only if £ is separating for M'.

Proof: “=": Let £ be cyclic for M. Suppose that z& = 0 for some x € M’. Then
for all y € M we have
xyé = yx€ = y0 = 0.
Since M¢ is dense in H, we infer that even xn = 0 for all n € H, hence x = 0.
Thus, £ is separation for M’.
“<”: Let £ be separating for M’. Assume that M¢ was not dense in H. Then
the orthogonal projection p onto cl(M¢)L was non-zero but we had

0= (p€, &) = (p€, p€) = [Ipé||*, (p € M&Y)
i.e., p£ =0 and p € M’ (which follows from step (D in the proof of )
which was a contradiction. |

Corollary 8.5: If M C B(H) is an abelian von Neumann algebra and £ € H cyclic
for M, then & is also separating for M.
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8 Abelian von Neumann algebras

Proof: If £ is cyclic for M, then £ is separating for M’ due to . Now,
because being separating passes to von Neumann subalgebras, the assertion follows
since M C M’. [ ]

Definition 8.6: A von Neumann algebra M C B(H) is said to be separable, if the
underlying Hilbert space H is separable (see (vii)).

Theorem 8.7: Let M C B(H) be a separable abelian von Neumann algebra, then
there exists a separating vector 0 # £ € H for M.

Proof: By Zorns Lemma, there exists a maximal family of non-zero unit vectors
(€x)ren such that ME\ L ME, for all A\, u € A where X # u. Since H is separable,
that family is countable, say (£,)%_;, R € NU {oo}. Its maximality implies that

Hy:={z&{ |neNn<RrxeM}CH
is dense in H. Denote by p,, the orthogonal projection onto cl(M¢,,). Then (see
step @ in the proof of ) we have p,, € M’. Put

R

g::Z%gneH\{O}

n=1

(note that (&,)f_, is orthonormal). Then ¢ is separating for M: Take x € M such
that & = 0. Then for all n € IN,n < R we have

1 1
0= pn(xg) = xpng = xﬁfn = ﬁxfna

so for all n € IN we have z&, =0, i.e., for all y € M and n € IN, n < R it holds
0 = y(x&,) = (y&,). Thus for all n € Hy it holds zn = 0 and as Hj is dense in H,
we get x = 0. |

Definition 8.8: An abelian von Neumann algebra M C B(H) is called maximal,
if M C N C B(H) for an abelian von Neumann algebra N C B(H) implies that
M = N.

Lemma 8.9: An abelian von Neumann algebra M C B(H) is maximal if and only
if M' = M holds.

Proof: Exercise. [ |

Corollary 8.10: Let M C B(H) be a separable mazimal abelian von Neumann
algebra. Then there exists a cyclic vector 0 # & € H for M.

Proof: By , there is a separating vector 0 # £ € H for M. Note that
M = M’ due to . Thus, implies that £ is also cyclic for
M. [ |
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Example 8.11: Let K be a compact Hausdorff space and let p be a finite Borel
measure on K. For each function f € L°°(K, 1), we define My € B(L*(K, u)) by
Myg := fg for all g € L*(K, ). We then have that ||[M¢|| = || f|| gk, for all
f € L*™(K, u). Consider the C*-algebra

A:={M;| feC(K)}.
Then we have the statements:

(i) M :=A"={M; | f e L*(K,p)}, which is a von Neumann algebra acting
on L?(K, p).

(ii) A” = A" and thus M’ = M, i.e., M is maximal abelian.

(iii) The constant function 1 is cyclic and separating for M.

Theorem 8.12: Let M C B(H) be an abelian von Neumann algebra and suppose
that there is a cyclic vector 0 £ & € H for M. Then, for any SOT-dense unital
C*-subalgebra A C M there exists a finite Radon measure p on K := Spec(A) with
supp(p) = K and an unitary U: L*(K, u) — H such that

UMU = {Mjy | f € L®(K, 1) }(= L®(K, n)) € B(L*(K, n)).

Remark 8.13: A finite Borel measure p on a Hausdorff space X is a finite Radon
measure, if it is inner regular, i.e., if for each Borel set B € B(X) we have

w(B)=  sup  p(K).

KCB compact

Those Radon measures are automatically outer regular, i.e., we have for each
B € B(X) that

w(B) = . u(U).

We define the support of a finite Radon measure by
supp(p) := X\ 'V,
where V' := [ J{U C X open | u(U) = 0}.

Proof: (D By the Riesz representation theorem, we find a Radon measure p on
the compact Hausdorff space K := Spec(A) such that

8 €) = /K /() du(z)

for all f € C(K), where x~!: C(K) — A is the inverse Gelfand transform, which
is positive. Define

Up: O(K) — H,  fr—=x"(f)E
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8 Abelian von Neumann algebras

Then, for all f € C(K), we have
10 fI? = OTHNHEXTHHE) = THIfPE ) = /K|f(9€)|2 du(@) = | 122 (x40

so that Uy extends to an isometry U: L?(K, u) — H.

@ Claim: U(L*(K,u)) = H, i.e., U is a unitary. Note that A¢ = Uy(C(K)) C
U(L?(K, p)) and cl(A€) = cl(M¢€) = H (as A C M is SOT-dense and ¢ is cyclic),
thus U(L?(K, u)) = H.

® Claim: supp(p) = K. Otherwise, there would be some f € C(K) such that

0= / @) P du() = [ TOEE = xMHE=0
K

which contradicts the fact that £ is also separating for M due to

@ Claim: For all f € C(K) C L™ it holds: U*x '(f)U = My. Take any
g€ C(K)C L*(K,p). Then

Ux HHUg=Ux"Hx H9)¢ = U (f9)é = fg = Msg.

Since C(K) is dense in L*(K, 1), we conclude that U*x~'(f)U = M;. Thus, we
see that U*AU = {M; | f € C(K)}.

® Claim: U*MU = {M; | f € L*°(K, p)}. Consider the *-isomorphism
Ad(U): B(L*(K,u)) — B(H),  x+— UzU*

with inverse given by Ad(U*): B(H) — B(L?*(K,u)). Observe that Ad(U) and
Ad(U*) = (Ad(U))~! are obviously SOT-continuous. Thus, since clsor(A4) = M
and also clsor({M; | f € C(K)}) = {M; | f € L°(K, )} (where this equality
is shown in ) we infer from Ad(U*)(A) = {M; | f € C(K)} (which
holds by @), that

Ad(U) (M) = {My | f € L™(K, p)}

as desired. |
Remark 8.14: In , we have seen that if a von Neumann algebra is
maximal abelian then it has a cyclic vector £ € H — under the hypothesis that H
is separable. (if combined with ) says that the converse

is also true — even without the separability hypothesis.
Theorem 8.15: Let M C B(H) be a separable abelian von Neumann algebra. Then

there exists a compact Hausdorff space K with a finite Radon measure pu such that
M and L>® (K, u) are *-isomorphic.
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Proof: By there exists a separating vector £ for M. Consider the sub
Hilbert space Hy := cl(M¢) C H. Then

¢: M — B(Hy), x — x|,

is a well-defined (since x maps Hy to itself) and injective (since §y € H is separating
for M) *-homomorphism that is unital. Thus ¢ is isometric ( ) so
that (M) is a C*-algebra on Hy. Now consider My = clsor(¢(M)) C B(Hyp).
Then ¢ is cyclic for My, because Mo& 2 p(M)E = ME and cl(ME) = Hy, hence we
may apply which gives U* MU = {My | f € L*°(K, )} and thus a
*-isomorphism ¥g: My — L™ (K, ) with

Yot L°(K, p) — Mo, f— UMU*.

We are done, if we can prove that infact My = ¢(M). To see this, take y € M.
By , we find a net (yx)xea in (M) such that yy — y in the strong
operator topology and |lyx|| < ||y]| for all A € A. Thus, we find a net (z))rea in
M such that yy = p(zy) and

[exll < el = llyall < llyl

for all A € A. Since {& € M | ||z|| < r} is compact with respect to the weak
operator topology for all r > 0, there is a subnet (zx(4))yer of (7x)xea such that
Tr(y) —wort  for some x € M (|[z]| < |ly|[). Thus, since ¢ is WOT-continuous,
P(@A(y)) 7wor ¢(x) and @(2x(y)) =wot ¥ (since p(xx) —soT ¥)-

Thus by the uniqueness of the limit y = p(z) € (M) which is what we wanted
to show. [ |

Remark 8.16: (i) We have used {x € B(H) | ||z|| < r} =: B(H), and hence
{reM||z| <r}=MnB(H), are compact with respect to the weak operator
topology for all > 0. This can be seen as follows: Consider the map

v:BH), — [[ fzeCllzl<rlclinl} =K 2— (2n)cnen-
¢meH

It is clearly injecitve and moreover continuous if B(H), is endowed with the
weak operator topology and K with the product topology; in fact, one can show
that ¢: B(H), — «(B(H),) is a homeomorphism. By Tychonoff’s theorem, K is
compact; thus it suffices to verify that «(B(H),) is closed. If (z))xea is @ net in
B(H), for which (t(xx))rea converges to some point z = (z¢.)¢nen, one finds a
linear map x: H — H such that (z(,n) = z¢, for all {,n in H. Thus, it follows
lz|| < r since

[{zCm = [z¢nl < 7lICiin]-
Hence z € B(H), with «(z) = z.
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8 Abelian von Neumann algebras

(ii) If H is separable and x € B(H) is normal, we may apply to
A = C*(z,1) and M = vN(x), which yields a *-isomorphism L*>(Spec(A), u) — M
for some finite Radon measure p. Since Spec(A) = Sp(z) due to Lemma 10.22
(from the Functional Analysis I lecture notes), we obtain a *-ismorphism

®: L®°(Sp(x),v) — M

with the induced measure v on Sp(z), that agrees with the measurable functional
calculus; see (Remark 6.12) (iv).

(iii) Let M C B(H) be a separable abelian von Neumann algebra. One can
show that there exists a selfadjoint element x = 2* € M such that M = vN(z).

(iv) From (iii), one can deduce that for each separable abelian von Neumann
algebra M C B(H) a countable (possibly empty) set I exists such that M is
*_isomorphic to either £°°(I) or L>(]0, 1], A\1)".

(v) stays valid of the separability condition is removed. In that
case one has to decompose H as H = @, cl(M¢y) for an orthonormal family
(Ex)xen like in the proof of . Let px be the orthogonal projection
onto Hy := cl(MEy). We know py € M’; one can show that Mp, C B(H)) is an
abelian von Neumann algebra with cyclic vector £y. Thus, by , Mpy
is *-isomorphic to L (K, uy) for some probability space (K, uy). Then M is

*-isomorphic to
B =) = L (T K [T )

AEA AEA A€A

!Here, A\! denotes the one-dimensional Lebesgue measure on B([0, 1]).
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9 Projections, factors and their type
classification

Motivation 9.1: We have already seen (see (iv)), that von Neumann
algebras contain typically “many” projections, i.e., operators e that satisfy e? =
e = e* (see (vi)). Thus, by studying projections, we gain some

deeper understanding of the structure of von Neumann algebras.

Definition 9.2: Let M C B(H) be a von Neumann algebra and let e, f € M be
two projections. We say that

(i) e and f are equivalent (e ~ f), if there exists a partial isometry u € M (see
(vii)), such that

u'u=e and wuu* = f.

This is also called Murray-von-Neumann equivalence.
(ii) e is subordinate to f (e 3 f), if there exists a projection g € M such that
e~g<f.

Remark 9.3: (i) The partial isometry that provides the equivalence must belong
to M; “M knows that the projections are equivalent”. Thus, both ~ and
= are relative to M. In fact, we can have f ~ e in B(H) but f » e in M
(namely if u ¢ M).

(ii) For M = B(H), we have the following:

e~ f< dimeH =dim fH
e 3 fedimeH <dim fH

(iii) g < f means f — g is positive. Note that
f-920e9f=9= fg=9g=gH CfH.

(iv) “~” is an equivalence relation, i.e.,

ecr~e (reflexivity)
ec~fo fre (symmetry)
° (e ~ f A f ~ g) =>e~g (transitivity)

WL : L .
=<7 is easily seen to be a preorder, i.e.,

e cJe,
e (eIfNfR9)=ely

We will see that “=<” is in fact a partial order, i.e., it satsifies also
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9 Projections, factors and their type classification

e eIfAfZe)=e~f. (antisymmetry)

Under a further condition on M, “=” is even a total order on
P(M) :={p € M | p projection},

i.e., any two e, f € P(M) are comparable in the sense that e X for f Se
must hold.

Theorem 9.4: (i) Let (e;)icr be a family of mutually orthogonal projections in
B(H) (i.e., we have e;ej = 0 for all i,j € I with i # j). Then ), ;e;
converges in the strong operator topology to a projection e.

(ii) Let (e;)ier, (fi)ier be two families of mutually orthogonal projections in a
von Neumann algebra M C B(H). Then:

[] eiNfiViEI:}Zielei NZiGIf’U
° €l§f1VZ€I:>216162 izzejfi

Proof: (i) Put K; := ¢;H and K := @,.; K; C H. Let e be the projection onto
K. We want to show that

(ZBQ —SOT €.
FCgnl

i€F =fin

@ For £ € K+, we have { € K;* for all i € I. Thus, Y, pe;£ = 0 for all
F Chn I, thus (3, p€i€)rcg,1 converges to 0 = ef in H.

@ For ¢ € K, we find by definition of K a summable family (&;);cr with &; € K;
for ¢ € I, that has the sum &, i. e., by Remark 5.23 (ii) from the Functional Analysis
I lecture notes we get

(ZEZF&) FCanl <ieZF€i€)Fcﬁn1 (as & = €if)

converges to £ = ef in H.
Thus, for each ¢ € K @ K+ = H, the net (> icr €i&)Fca,r converges to ef in H.

(ii) For each i € I, we find a partial isometry u; € M such that ufu; = e; and
u;ul = f;. Define u € B(H) by

ulk, ‘= ui|lg, and w1 :=0.

Then u is a partial isometry with u*u =), ; e; and uu* := ., fi. Moreover,
for each element y € M’, we have

K, (as y € M" and ye; = e;)

for all 7 € I, thus yu = uy; this means u € M" = M.
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For the second part: For each i € I we find a projection g; € M such that
e; ~ gi < fi. Then (via the previous result):

de~d a<y fi

iel iel iel
i.e., ZiGIjZiEIfi' .

Theorem 9.5 (Cantor-Bernstein-Schroder theorem for projections): Let M C B(H)
be a von Neumann algebra and let e, f € M be two projections. Then:

e~f<<eZfand f Je.
Thus, 3 is a partial order on P(M) (or, more precisely, on P(M)/ ~).

Proof: “=" is obvious, since e ~ f < fand f ~e <e.
Now for “«<”: By assumption, we have

e 2 f = Ju € M partial isometry : e = u*u and wu* < f
f 2 e= 3v € M partial isometry : f = v*v and vv* <e

Note that u|eg: eH — fH and v|su: fH — eH are both isometries (see
(vii)). Define:

e ¢y :=e—v'v<e, fo:=uee* <uu* < f— note that
f02 = ueguuegu® = uegeegu” = uege™ = fy.

o ¢, =vfp_1v* <wvv*<e, [, =ueu* <uut < f.
® o = e_zne]Nevu foo = f_zne]an

Note that (e, )nen are mutually orthogonal projections in M and (f,)nen are
mutually orthogonal projections in M. Furhtermore note that the convergence of

the series ) - €n, 2 ,cw fn IS guaranteed by (i).
@ Claim: e, ~ f, for all n € IN.
Indeed:

o (uey)*(uen) = eputue, = eyee, = e = ey,
o (uen)(Un)" = Uenents® = uenu® = fu

where ue, is a partial isometry as uep|e,m: enH — eH is isometric and
uen (e, myr =0 (since (e, H)* = (1 —e,)H) that belongs to M.

@ Claim: exo ~ foo-
Consider vy = v*(e — Zﬁ;o €r). Then

N N
UNUfV:v*(e— E en)v:v*(e—eo)v— g v e, v

n=0 n=1
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9 Projections, factors and their type classification

N

N-1
= v ovtv — Z(U*U)fn—l(v*v) =f- Z In
n=0

n=1

and

N N N
UVNUN = (ef E en)vfu* (e - E en) =e— E en,
n=0 n=0

n=0

since e — Zg:o en=(e—eo)— N e, <e—ey=uvv*. Thus, as N — oo,

n=1 —
UN —SOT Voo ‘= V¥ e ( (i)) and

N

* *
vvaOTevNUN:e—Zen —SOT €oo as N — oo

n=0
thus vi Ve = €oo and analogously veovi, = foo. Thus, by (ii) it
holds

=t P en~foot P fu=1
nelN nelN [ |

Theorem 9.6: Let M C B(H) be a von Neumann algebra. For x € M, we denote
by supp(x) the orthogonal projection in B(H) onto ker(z)* = cl(im(z*)). Then
supp(z) € M and moreover supp(x) ~ supp(z*).

Proof: Consider the polar decomposition x = v|z| of x from

Then v € M is a partial isometry and satisfies (see ) vi'u =
projection onto ker(z)* = supp(x) and vv* = projection onto cl(im(z*)) = supp(z*).
Thus, supp(z),supp(z*) € M and supp(z) ~ supp(z*). [ |

Definition 9.7: Let M C B(H) be a von Neumann algebra.
(i) We call Z(M) := M N M’ the center of M,
(ii) If Z(M) = C1, then M is called a factor.

Remark 9.8: Every separable von Neumann algebra M C B(H) can be decomposed
as a direct integral

S2]
M%/ M, du(x)
b

over some standard measure space (X, p), corresponding to the decomposition

@
H%/ H, du(zx)
b'e

of the underlying Hilbert space H by a measurable field of Hilbert spaces (Hy)zex,
where M, C B(H,) is a factor for p-almost all z € X.

In this sense, factors are seen as the building blocks of von Neumann algebras.
That theory, however, is technically extensive and we do not go into details here.
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Lemma 9.9: Let M C B(H) be a factor. Then, for any two non-zero projections
e, f € M, there are non-zero projections ey, f1 € M such that e; <e, f1 < f and

er ~ fi.

Proof: (@O Claim: fMe # {0}.

Consider K :=cl(MeH) C H, which is invariant under M. Thus, the projection
p onto K is in M’. Furthermore, we have that K is invariant under M’, i.e., for
all z € M’ it holds * K C K and thus pz = xp (since also K+ C K+). Therefore,
peEM'=M. Aspe M"andpe M" = M,wehavep e MNM' = Z(M) =Cl, it
must hold p = 0 or p = 1. Since Kneq{0} we infer p = 1. Thus, cl(MeH) = K = H.
Now since f # 0, we conclude fcl(MeH) # {0}, i.e., fMe # {0}.

@ By @, we find z € M such that x := fze # 0. We have: fx =z and ze =z
(i.e., e*z = z*). From fx = 2 we deduce f -supp(z*) = supp(z*) and from ze = x
we conclude e - supp(x) = supp(x). Thus, by

fi=supp(z*) < f and e :=supp(x)<e

and by , we also have that e; ~ fi. [ |

Theorem 9.10: Let M C B(H) be a factor. If e, f € M are projections, then e 3 f
or f 3 e holds. So, any two projections in P(M) are comparable.

Proof: Consider families (e;, f;)ier such that

e (e;)ier are mutually orthogonal projections in M,
e (fi)ier are mutually orthogonal projections in M,
e Foralliel:e; <e, fy < fande; ~ f;

They are partially ordered by inclusion; thus, by Zorn’s Lemma, there is a maximal
family (e; f;)ier. Then:

e’::Zeige and fli:Zfz‘Sf
icl icl
and e’ ~ f' by .

Claim: ¢ =¢e or f' = f.

Indeed, if both e — ¢’ # 0 and f — f’ # 0, we find by non-zero
projections ¢ < e — ¢’ and h < f — f’ such that g ~ h. Hence, we can enlarge
(e;fi)ier by (g, h) which contradictis the maximality of (e;f;)ic;. Thus “e = ¢’ ~
[<f=elflor“f=f~e<e=fZe" [ |

Definition 9.11: Let M C B(H) be a von Neumann algebra.

(i) A projection 0 # e € M is called minimal, if it holds “(f € P(M), f <e) =
(f=0o0r f=¢)"
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9 Projections, factors and their type classification

(ii) A projection e € M is called finite, of “(f € P(M),e~ f <e)= f=¢€"
Remark 9.12: (i) Consider M = B(H). Then e is minimal if and only if
dimeH =1 and e is finite if and only if dimeH < oo.

(ii) In general e is minimal if and only if eMe = Ce and if e is minimal, then e
is finite — the converse is false however.

Indeed: If e is minimal, then e ~ f < e implies f =0 or f = e, where f =0 is
not possible as f ~ e # 0.

Definition 9.13 (Murray-von-Neumann, ~ 1930): Let M C B(H) be a factor. We
say the M is of

(i) type I, if M contains a minimal projection.
(ii) type II, if M contains no minimal projection but a finite projection.

(iii) type III, if M contains no finite projection.
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10 Type I factors and tensor products

Factors of type I are isomorphic to B(H) for some suitable Hilbert space H; at
the same time, their commutants are also of this particular form. This result is
the goal of this chapter, for which tensor products of von Neumann algebras are
needed.

Remark 10.1: (i) Let (Hy, (-,-)1) and (Ha, (-, -)2) be (complex) Hilbert spaces.
On their algebraic tensor product (over C)

H1®H2:{Z&@ni:ne]N,EieH,meH}

i=1

we may introduce an inner product (-, ), which is uniquely determined

(€1 @n1,8 @mn2) = (§1,82)2(N1,Mm2)2

for all &1,& € Hy;m,n2 € Ha. This yields a pre-Hilbert space, whose completion
will be denoted by H; & H, and is called the Hilbert space tensor product of Hy
and Hs.

(ii) If (&)ier and (n;) e are orthonormal bases of Hy and H, respectively, then
(& ®nj)(i,5)erx is an orthonormal basis of H; ® Hy. Thus

Hy ® Hy = ; :
1® Ha @fz ® Ho
i€l ~p,
(i) If x € B(H,) and y € B(H>) are given, then
(z@y)(€@n) = () @ (yn) for all { € Hy,n € Hy
defines a linear operator z ® y: H; ® Hy — Hy ® H> that extends uniquely to an
operator * ® y € B(H; ® Hy) with
2 & yll = llzllyll

(iv) Let My C B(H;) and My C B(H3) be von Neumann algebras. We define
their (von Neumann algebra) tensor product by

M, @ My = CIWOT(<{£L' ®y | x € M,y € M2}>) - B(H1 ®H2)

It is a deep theorem (in fact, it was one of the first applications of the Tomita-
Takesaki theory) that
(M7 @ M) = M{ ® M.

Furthermore one can show that if both M; and M> are factors, then also M7 ® M,
is a factor.
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10 Type I factors and tensor products

Lemma 10.2: Let (Hy,(-,-)1) and (Ha, (-,-)2) be complex Hilbert spaces. Let M C
B(Hs) be a von Neumann algebra. Then

(i) ¢: B(Hy) = B(H; ® Hs), y+ idy, @y is WOT-continuous and we have
(M) =(M)" = (Cidg,) ® M,

i.e., idg, ® M = (M) C B(H; ® Hs) is a von Neumann algebra.
(ii) We have that

(B(H)) & MY =idy, ® M’ and (idy, @ M) = B(H,)® M.
In particular, since B(Hz)" = Cidg,,
(idg, ® B(H2))' = B(H1) ®idyg, and B(H:)® B(Hs) = B(H;, & Hs).
Proof: Fix an orthonormal basis (&;);c; of Hy. We define

e v, ; € B(H,) for i,j € I via v; ;& := (§,)1&
o V, € B(Hy,H @ By) fori € I viaV;,, :==¢& @n.

@ Claim: V;V} = v, ; ®idg, foralli,jeI.
Proof (of D): First, we check that V(£ ® ) = (&, &;)n. Indeed, for all i € Hy,
(Vif, € @n) = (& @10, @n) = (&, )1(,m2 = (71, (§,§)m2 = (7, V(@ n)).

Thus we get
ViVi(€en) = Vi({§,§0m) = (§:§16 @0 = v ;§®@n. [ |
@ Claim: Vi*V; = 6; jid g, .
Proof (of @): Indeed we have
VitVin = Vir(& @m) = (&, &1 = 6iym- u
@ Claim: Let A:=={V; x V' |i,j € I,x € M}, then A’ =idy, ® M'.

Proof (of @): Note that V; x Vi=wv; ® z, thus “D” is clear. Conversely, take
w € A’. Then, in particular

wV;V5 = ViViw
for all 7,5 € I. Assertion 2 implies that y := V*wV; = ViwVj for all i,j € I and
Vi*wV; = 0 for all 4,5 € I where i # j; hence

w= (Vv (V) = v = Yy =id, o
iel jeI icl icl
We want y € M’: Take x € M, then, for any i € I,

yr VP w(Vi x VOV = Vi (Vi x ViV = aViwVi = oy, n
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@ Claim: (B(H1)®@ M) =idy, @ M.
Proof (of @): We clearly have A C B(H;) ® M; thus
(B(H, ® M) € A’ Lidy, ® M’ C (B(Hy) ® M)’
and hence (B(H;)®@ M) =idy, ® M. [ |
® Claim: (idy, ® M) = B(H,) ® M.
Proof (of ®): Applying @ to M’ instead of M, we get that
(idg, ® M) = (B(H,) @ M")" = B(H,) ® M'. n

Now, @ and ® prove (ii). For proving (i), note that by (i) ¢«(M) = idy, ®
M = (B(H1) ® M) so that (M) is weakly closed (see (Lemma 6.7) (i)). Thus
(M) = clwor(M) = «(M)"” and furthermore clwor(M) = (Cidy, ) ® M. |

Example 10.3: If (Hy,(-,-)1) and (Ho, (-, -)2) are complex Hilbert spaces, then
idg, ® B(Hs) C B(H; ® Hs) is a factor of type I. Indeed:

Z(idg, ® B(Hs)) = (idg, ® B(Hy)) N (idy, ® B(Hs)) = Cidy, a1,

and idy, ® e for any projection e € B(Hy) with dimeH = 1 is minimal.
We prove now that in fact any factor of type I is of this particular form.

Theorem 10.4: Let M C B(H) be a factor of type I. Then there are Hilbert spaces
Hy, Hy and a unitary U: H — Hy & Hy such that

UMU* =idy, ® B(H2) and UM'U* = B(H;) ® idg,.
Thus, we have a WOT-continuous *-isomorphism
®: B(Hy) — M, x+— U*(idy, ® x)U.

Proof: Consider a minimal projection e € M. Then, by Exercise 2 of Sheet 8, we
find a family (e;);er of mutually orthogonal projections in M such that

e;j~eViel and 1:1"—|—Zei
iel
for some projection r € M with r 3 e but r £ e.
Claim: r = 0. Take a partial isometry v € M such that u*u = r and uu* < e.

By minimality of e, either uu* = 0 or uu* = e; the latter would give r ~ e, which
is excluded, thus uu* = 0, which then gives v = 0 and hence r = 0.

Thus 1 =5>. ;e i.e.
H= @eiH.
iel

i€l
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10 Type I factors and tensor products

Take now partial isometries u; € M such that uu; = e; and u;uf = e for all i € I.
Then
U:H—eH&P(I) (= H &H,), fHZ(Uif)@"SM
il
where (8;);er is an orthonormal basis of £2(I), is a surjective isometry, hence a
unitary. Note that

U (n®38) =Y _{8,6;)ujn.
Jjel
Now, take any x € M and put & := UzU*. Then
En®0)=UY (6,0)xusn=">_(5,0;) (wizun) @5;.

jer igel E——v

] —_— . * . * . * . fop— .. —_—
Now, since ex; je = u;u; (uzxuj)ujuj = wzu; = z;; and eMe = Ce by (Remark

9.12) (ii), it follows that x; ; = A; je for some \; ; € C. Thus, we get
i,j€l

= Z (6,05)Xi jm ® 6 (as en € eH)
ijel

=n®AS

where A € B((?(I)) is defined by A§ :=
finally

iier(0:00) A 50, (e, A= (Nij)ijen);

UzU* =% =idey ® A € B(eH & (*(I)),

i.e., UMU* Cideyr ® B(2(I)).
We also have the other inclusion “2”, since each A € B(¢%(I)) induces an
operator

z=U"(iderr @ AU = Y (AS;, 6;)ulu; € M
ijel
(as uju; € M) such that UzU* = idey ® A. Thus in total we get
UMU* =id.g ® B(¢*(I))
and (Lemma 10.2) (ii) yields that

UM'U* = (UMU*) = (iden ® €*(1))" = B(eH) ® idg2(p). m

Definition 10.5: Let M C B(H) be a factor of type I. We say that
(i) M is of type I, if M = B(Hs) where dim Hy = n.
(ii) M is of type I, if M = B(Hs) where dim Hy = co.
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11 Group von Neumann algebras and
type 1I factors

We present a general construction that produces von Neumann algebras starting
from discrete groups. This will show, that there are indeed “interesting” examples
of von Neumann algebras. In particular, we will prove existence of factors of type
II.

Throughout the following, let G be a discrete group. We associate with G the
Hilbert space

F@y:{&G—%C:EJﬂ@F<m}

zeCG
with the inner product given by (§,7) :== - 4 £(z)n(z).
Definition 11.1: (i) The left reqular representation of G is given by
A G — B(A(@), g+ A,
where (A€)(z) i= £(g~12).
(ii) The right reqular representation of G is given by
0 G— BEG), g,
where (p,€)(x) i= £(zg).
Remark 11.2: (i) For each y € G, we define 6, € ¢*(G) by
5,(x) = {1, if z =y,

0, else.

Then (,)yec forms an orthonormal basis of £2(G). Thus, we may write for any

£ e (G):
€= &9,

yeG

and A4 and p, are given by continuous and linear extension of A\;0, = d4y and
Pgly = Oyg—1. Since AgAg-1 =1 = Ag-1Ag and Aj = A\j-1, all A\; are unitaries on
/%(G); the same holds for p,.

Definition 11.3: (i) For &,n € ?(G), we define their convolution by

Ein: G— €, (&en)(x) =D &lgmlg 'x) =D &ag n(g). (11.1)

geG geG

In fact, (£ xn)(x)] < ||€]|]|n]| for all x € G.

61



11 Group von Neumann algebras and type II factors

(ii) Let £ € *(G). We put D¢ := {n € (*(G) | £ xn € £*(G)} and define the
unbounded linear operator

LEZDE —>£2(G), n—>&xn.
Analogously, D; := {n € 2(Q) | n*¢& € (@)} and
Re: Dy — 1%(G), n—n*E.

Lemma 11.4: For & € (2(G) both L¢ and Re have closed graph in (*(G) & (2(G).
In particular: If D¢ = €*(G), then L¢ € B(€*(G)), and analogously, if Dy = £*(G),
then Re € B((*(G)).

Proof: Let (1, )nen be a sequence in ¢2(G) such that &, — n € ¢%(G) and that
Lenn, — ¢ € 2(G). Then, for each x € G, we have

[C@) — (€)@ = lim |(€+ma)(x) — (€ m)()]
= lim [ (5 — n)(@)| < Tim [€]ln — n] =0,

thus we get £+ n = ¢ € (*(G), i.e., n € D¢ and Le¢n = (. By the closed graph
theorem (Theorem 4.16 from the Functional Analysis I lecture notes), we see that
Le € B(2(Q)) if De = 0%(G). |

Definition 11.5: A vector £ € (2(G) is called
e left-convolver if & x (?(G) C (*(G) (i.e., D¢ = (*(Q)),

o right-convolver if (*(G) x € C (*(G) (i.e., Dy = (*(G)).
We define

L(G) == {L¢ | £ € £*(QG) is left-convolver} C B(¢*(G)),
R(G) := {R¢ | ¢ € *(G) is right-convolver} C B(¢*(G)).

Remark 11.6: (i) For each g € G, §, € (*(G) is both a left— and right-convolver.
We have (see ) 0gx& = A&, i.e., Ls, = Ay and analogously {* 64 = pg—1€,
Le, Rs _, = pg; thus, )\(G) C L(G) and p(G) C R(G)

(ii) For & € (2(G), we define £ € (2(Q) by &(x) == &(z1). If € € £2(Q) is a
left-convolver, then so is £ and we have that Lf = Li. Similarly, Rg = R} for
right-convolvers &.

(iii) Since convolution is associative, we have L¢y, = L¢L, and Reyy = Ry Re.

shows that L(G) and R(G) are unital *-subalgebras of B((*(G))
that contain A\(G) and p(G) respectively. We next show, that actually both are
von Neumann algebras and commutants of each other.
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Theorem 11.7: Let G be a discrete group. Then both L(G) and R(G) are von
Neumann algebras acting on (2(G) and it holds true that

L(G) = R(G) = p(G) and R(G)=L(G) = \G)'

and therefore p(G)" = R(G) and \(G)" = L(G).
We call L(G) and R(G) the left— and right group von Neumann algebra of G
repectively.

Proof: (@ Claim: p(G) C L(G).
Proof (of @): Take T € p(G)’ and put £ := T, € £%(G). Then, for all g € G,
§x0y = pg—1§ (by )
= pg-1T0c = Tpyg-1T6. = Tpy-10. =T,
and hence, by linearity, we get
Exn="Tn

for all € € ({6, | g € G}) C (3(G). If n € £*(G) is given, we find a sequence
(Mm)new in ({64 | g € G}) C D¢ such that n, — n and Len, = T, — Ty (due to
the continuity of T'). Thus, by , N € D¢ and Legn = Tn. Therefore
D¢ = 13(G), i.e.,  is a left-convolver and T = L¢ € L(G). [ |

@ Claim: L(G) = R(G) = p(G)'.

Proof (of @): We clearly have L(G) C R(G) C p(G) and by D we also have
p(G) C L(G). In particular, L(G) is weakly closed (by (Lemma 6.7) (i)) and hence
a von Neumann algebra. |

® Similarly, R(G) is a von Neumann algebra and R(G) = L(G) = M\(G)'.

@ Using @ and @ and von Neumanns bicommutant theorem ( ),
we infer that

p(G)Y" 2 RGY € RG) and AG) 2 L(@)" & L(G).

Theorem 11.8: Let G be a discrete group. Then
7: L(G) — C, x +—> (X0, Oc)

is a positive linear functional with 7(id) = 1 (i.e., a state), which is WOT-
continuous and moreover

o faithful, i.e., “r(z*z) =0=2=07,

e tracial, i.e., 7(zy) = 7(yx) for all z,y € L(G).
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11 Group von Neumann algebras and type II factors

Proof: We only have to verify, that 7 is faithful and tracial; the other assertions
are obvious.

@ Claim: T is faithful.
Proof (of D): Take z = L¢ € L(G) for some left-convolver ¢ € £2(G). Then:
€1 = |Ledel|* = (Lede, Lede) = (LgLebe, be) = T(a"2).
Thus, if 7(z*z) = 0 implies { = 0 and hence x = L = 0. |
@ Claim: T is tracial.

Proof (of @): By the WOT-continuity of 7, it suffices to verify that 7(zy) = 7(yx)
for all z,y in the strongly dense subalgebra ({)\; | g € G}) (due to .
By the linearity, we only have to check that 7(AgAn) = T(ApAg) for all g,h € G.
This can be seen as follows:

1, h =
r(Agm:<AgAhée,6e>=<6ghae,6e>:{ gn=e

0, else.

1, hg=ce,
= {0 else = <)\h>\g5e, 5l> = T(/\}L/\g)

which concludes the proof of 2. |

As 7 is indeed tracial and faithful, we have proven . |

Which (left) group von Neumann algebras are factors?

Definition 11.9: A group G is called infinite conjugacy class group (abbreviated
i.c.c. group), if each non-trivial (i.e., h # e) conjugacy class {ghg~' | g € G} is
infinite.

Theorem 11.10: Let G be a discrete group. Then L(G) is a factor if and only if G
s an infinite conjugacy class group.

Proof: “=": Suppose G is not an infinite conjugacy class group, i.e., we find a
non-trivial element e # h € G such that h¥ := {ghg™! | g € G} is finite. We define
x =3 cpe A € L(G). Since gh®h™ = h for all g € G, we have

AgTAg-1 = Y Agrg1= > Ap==x

kehG kehC

and thus A\jz = 2A,. By , we have that x € \(G)' = L(G)’; hence
z € L(G)NL(G) = Z(L(G)). Now, observe that « ¢ C1 as (\g)sec are linearly
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independent in L(G) and A, = 1 — Indeed, if g1,...,9, € G and ay,...,a, € C
with >, a;A; = 0 and g1, ..., g, mutually different are given, then

0= (iai)\gi)&i = iaiégi,

and since (d,)g4ec is an orthonormal basis of ¢?(G), we infer a; = -+ = a,, = 0.
Thus Z(L(G)) 2 C1, i.e., L(G) is not a factor.

“«<”: Suppose that G is an infinite conjugacy class group. Take any z € Z(L(QG));
since € L(G), we find a left-convolver £ € £2(G) such that = L¢ and since also
x € L(G), it satisfies for h € G:

Lg =T = )\h—ll‘)\h = )\Z$>\h = Léh—MEv

and if applied to 6., & = 05,1 * £ * 6p. Thus, for any g € G:

£(9) = ((Gp1%&) x0n)(g) = (G x(gh™) = &(hgh™).

Thus, £: G — C is constant on {hgh™! | h € G} for each g € G. Since G is
assumed to be an infinite conjugacy class group and ¢ € £2(G), € = 0 is enforced on
UQGG\{E}{hgh_l | h € G} = G\{e}. Hence: & = &(e)d, and thus z = £(e)1 € C1.1

What can be said about the type of such factors?

Remark 11.11: (i) A von Neumann algebra M C B(H) is said to be finite if
1 € M is a finite projection, or equivalently, if every isometry in M is a unitary
(i.e., v*v =1 = vv* = 1). According to Exercise 2 (a), Sheet 7, each projection in
a finite von Neumann algebra is finite.

(ii) Let M C B(H) be a von Neumann algebra, that has a faithful tracial state
7: M — C, which is moreover normal, i.e., WOT-continuous on

My = {ze M| |z <1}.

Then M is finite (In fact, the converse is also true, this requires work).

(iii) Let M C B(H) be a factor of type I. Then M is finite if and only if M is
of type I, for some n € IN, which follows from and (Remark 9.12)
(i). In particular, a factor of type I is finite if and only if it is finite dimensional.

Definition 11.12: Let M C B(H) be a factor of type II. We say that

(i) M is of type I, if 1 is a finite projection.

(ii) M is of type I, if 1 is not a finite projection (but there are finite projections).
Remark 11.13: Let M C B(H) be a factor. If M has a faithful normal tracial
state 7: M — C and is not finite dimensional, then M is of type II;. Indeed: 1 is

finite due to (ii) but not of type I due to (iii), hence
of type I1;.
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11 Group von Neumann algebras and type II factors

Corollary 11.14: Let G be a non-trivial discrete infinite conjugacy class group.
Then L(G) is a factor of type II;.

Proof: By , L(G) is a factor. Due to , it admits a
faithful normal tracial state 7: L(G) — C. Since G is non-trivial and an infinite
conjugacy class group, it contains infinitely many elements; thus L(G) is not finite
dimensional. The assertion now follows from . |

Example 11.15: (i) Consider G = So := |, cpy Sn, i. €., the group of all permu-
tations of IN that move only finitely many points. S, is an infinity conjugacy class
group. Indeed, if o € Sy, o # id is given, then we find i # j such that o(i) = j.
Consider the transposition 7, := (i,7) for r > max{i, j}, then we have

(mpom )(r) = (mpom:)(r) = j,

i.e., all m.om, ! are different. Thus L(S4) is a type II; factor. It is the so-called
hyperfinite IT; -factor R.

(ii) Consider G = F,,, the free group with n generators; if n > 2, then F,, is an
infinite conjugacy class group. Thus, L(F,,) is a type II; factor; a so-called free
group factor.

Murray and von Neumann have shown, that L(F,) 2 R; for that purpose they
have introduced the so-called property I'. It is still an open problem, whether
L(F,) =2 L(F,,) for n,m > 2, n # m. This problem motivated Voiculesceu
(arround 1985) to develop “free probability theory”; this has led to discover, in
particular, amazing connections between such operator algebraic questions and
random matrix theory. By using that bridge, Dykema and Radulescu (1994) have
shown independently that

e cither L(F,) = L(F,,) for all n,m > 2,
e or L(F,) % L(F,,) for all n,m > 2, n # m.
What other infinite conjugacy class groups G satisfy L(G) 2 R?

Remark 11.16: (i) A separable von Neumann algebra M C B(H) is called
hyperfinite, if there is an increasing sequence (A, )nem {0} of finite dimensional
*-subalgebras of M such that

M = CIWOT( U An>
nelN
For M = L(S), one can choose A, := L(S,).

(ii) It was proven by Murray and von Neumann that up to isomorphism, there
is a unique hyperfinite II;-factor; it is denoted by R.

(iii) One can show that R embeds into any factor of type II;. On the other
hand, the Connes-embedding conjecture problem asks whether every type II;-factor
on a separable Hilbert space can be embedded into the ultrapower R of R by a
free ultra-filter w; roughly speaking, this asks for matricial approximations.
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Definition 11.17: A countable discrete group is called amenable, if there is a state
m: £>°(G) — C such that for all f € £°(G) and g € G it holds

m(f) = m(Agf)
where (Agf)(x) := f(g~'z) for all x € G; m is called a left-invariant mean on G.

Remark 11.18: (i) If G is a finite group, then

1
m(f) = 17 > f9)

geqG

defines a left-invariant mean on G.

(ii) If G can be written as G = |J,,cy G for an increasing sequence (G, )new of
subgroups of G, then it holds: If GG, is amenable for all n € IN, then so is G. This
shows that Se = (J,,cy Sn is amenable.

As a consequence of “Connes’ tour de force” (1976) about injective type 1I;
factors, we have:

Theorem 11.19: Let G be a countable non-trivial infinite conjugacy class group.
Then L(G) = R if and only if G is amenable.
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12 The trace construction on finite
factors

In this Chapter, we briefly discuss how on finite factors, i.e., factors that finite
in the sense of (Remark 11.11) (i), a unique faithful normal tracial state can be
constructed; see (Remark 11.11) (ii). The main results read as follows:

Theorem 12.1 (Existence of the trace): Let M C B(H) be a factor. Then the
following are equivalent:

(i) M is finite.

(ii) M has a (norm-continuous) tracial state 7: M — C.

(iii) M has a normal tracial state 7: M — C.

Theorem 12.2 (Uniqueness of the trace): Let M C B(H) be a finite factor. Then
there is a unique (norm-continuous) tracial state 7: M — C. Moreover, T is
automatically normal and faithful.

Every finite factor M is either of type I,, for some n € IN or of type I1y; if M is
of type I,, then M = B(C") = M,,(C). Then the trace 7 on M comes from

n

1
try, : Mn(@) — C, (ai,j)lgiﬂ‘gn — ; ;am.

Thus, it suffices to treat the type II; case.
Theorem 12.3 (Dimension function): Let M C B(H) be a factor of type II,. Then

there exists a function

A:P(M) —[0,1],
the so-called dimension function of M, with the following properties:

(i) A(1) =1 and for all p € P(M) it holds A(p) =0 if and only if p=0.

(ii) For all p,q € P(M) it holds p = q if and only if A(p) < A(q). In particular
it holds p ~ q if and only if A(p) = A(q).

(iii) For all p,q € P(M), pq =0, it holds A(p + q) = A(p) + A(q).

(iv) A is completely additive, i. e., for each family (p;)icr of mutually orthogonal
projections in M, it holds A(Y,c;pi) = Y icr Api)-

Proof (Sketch): (D “Halving lemma”: For each p € P(M), there are projections
Po,p1 € P(M) such that py ~ p; and pg + p1 = p; in other words, “py and p; halve

p”.

68



Proof (of M): (a) Since p is not minimal, we find ¢ € P(M) such that ¢ < p,
q # 0, and ¢ # p. Since M is a factor, Claim @) in the proof of (Lemma 9.9) shows,
that ¢M(p — q) # {0}. Take x € M with y := qz(p — ¢) # 0 and consider its polar
decomposition y = uly|, then v # 0 and v*u + uu* < p; clearly v*u L uu*. Indeed,
note that u*u is the projection onto ker(y)* C (p — ¢)H C (1 — ¢)H and uu* is
the projection onto cl(im(y)) C ¢H.

(b) Consider families (p;, g;)icsr such that

e (p;)ier are mutually orthogonal projections in M,

e (gi)icr are mutually orthogonal projections in M,

e For all ¢ € I it holds p; ~ ¢,

® DicrPit Xier 6 <P
By Zorn’s Lemma, there is a maximal family (p;, ¢;);esr of this kind; now put
Po = D ;erpi and qo = ) ;.;q;. Using (a), it follows due to maximality of
(is Gi)ier that po +qo = p. L
Note: The halving lemma is true in any diffuse factor; a von Neumann algebra is
said to be diffuse, if it contains no minimal projections.

@ “Fundamental projections”: There is a sequence (pn)new\ {0} of mutually
orthogonal projections on M such that for all n € IN it holds

n
Dn~1— Zpi
=1

One constructs the sequence (p,)nen by iterating . We have the following;:

(a) If for p € P(M) it holds p = p, for all n € IN, then p = 0.

(b) > ,enPn =1 and therefore p, ~ ZiZn-‘rl ;.
Indeed: p:=1-3,.npi <1—3> 7" pi ~pyforall nelN, by (a) now
p = 0 follows.

(c) For all 0 # p € P(M) there is n € IN such that p, = p.
Define
FPM)={peP(M)|IneN:p~p,},
the set of fundamental projections in M

Fundamental projections (or, more precisely, equivalence classes thereof) play for
projections the role of dyadic rationals for numbers in [0, 1]. In fact, we have: For
each 0 # p € M, there exists a unique increasing sequence ny < ng < ng < ... in
IN and a sequence (p},)ken of mutually orthogonal projections in M such that

(a) pj, ~ pi for all k € IN,

(b) p= Zke]N D-
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12 The trace construction on finite factors

We define
A(p) =) 27,

keN

i.e., A(pp) =27™. One can show — but this requires work — that this yields the
desired dimension function. [ |

Proof (of ): @O “Radon-Nikodym-trick”: Let o, ¢: P(M) — [0, 00)
be completely additive maps with ¢, # 0. Suppose that ¢ is faithful, i.e., p(e) # 0
whenever e # 0. Then

Ve>03pe FP(M),0>0YpeP(M),q<p:0p(q) <v(q) <0(1+e)p(q).
@ Let ¢: M — C be a positive linear functional and ¢ > 0 such that
Vp € P(M): Ag) < ¥(q) < (1+¢e)A(q).
Then for all positive x € M and unitaries u € M,

Pluzu”) < (14 e)ip(x),

i.e., ¥ is an e-trace; equivalently, 9 satisfies ¥ (za*) < (1 + &)y (a*z) for all z € M.

® Using @D and ), one can show that for every £ > 0 a normal e-trace 1. exists
with
VgeP(M): (1+¢) 'Ag) < velq) < (1+2)*A(g).
@ Choose a decreasing sequence (g, )nen in (0, 00) with &, | 0 as n — oo; then
for all p € P(M) it holds
lim v, (q) = A(q).

n—oo

and in fact, (¢, )nen converges in norm to a linear functional ¢: M — C which
turns out to be a faithful normal tracial state. This shows: “(i) = (iii)” holds also
for M being of type II;.

“(iil) = (ii)” is trivial and “(ii) = (i)” is an exercise. [ |

Proof (of ): D “Dixmier’s averaging theorem”: Let M C B(H)

be a factor and let € M be given. Then
(a) For all € > 0 there are unitaries uy,...,u, € M and « € C such that

1 n
Hquixuf —ole <e.
i

(b) We put K, := cljj(conv{uzu* | u € M unitary}); then K, N C1 # @.
Note: (b) follows from (a) as e | 0.
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@ If 7: M — C is a norm-continuous tracial state on the factor M, then
K, NC1={r(x)1}. Thus, there is at most one norm-continuous tracial state on
M; hence the one found in the unique one, which is even normal
and faithful. |

Remark 12.4: Consider M = M,,(C). Then

trp, ()1 = / uzu® du,
Un(C)

where U, (C) = {u € M,(C) | v unitary} and “du” stands for the Haar probability
measure on U, (C). This fact is generalised by @ (b) in the proof of .
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13 The standard representation of
tracial von Neumann algebras

Motivation 13.1: So far, we have studied von Neumann algebras (mostly) on their
“own” Hilbert space that accompanies them by definition. However, especially
for tracial von Neumann algebras, i.e., von Neumann algebras that are equipped
with a faithful normal tracial state (which is unique in the case of a factor due
to ), there are other, sometimes better behaved, representations on
other Hilbert spaces.

Definition 13.2: Let M C B(H) be a von Neumann algebra and let K be another
complex Hilbert space.

(i) A unital *-homomorphism 7: M — B(K) is called a representation of M on
K (see Definition 5.12).

(ii) A representation 7: M — B(K) is said to be normal, if it’s restriction to
M, ={x € M | ||z| <1} is WOT-continuous.

(iii) A representation 7: M — B(K) is said to be faithful, if it is injective.

Theorem 13.3: Let w: M — B(K) be a normal representation of M on K. Then
w(M) C B(K) is a von Neumann algebra.

We do not give a proof but we point out that special cases appeared before in

e the proof of ,
e in (Lemma 10.2) (i).

Theorem 13.4: Let M C B(H) be a von Neumann algebra and let ¢o: M — C
be a state. Consider the cyclic representation (my,, Hy, &) obtained by the GNS
construction with respect to ¢, see . Then ¢ is normal (in the sense

of (Remark 11.11) (it)) if and only if my,: M — B(H,) is normal.

Proof: Since ¢(z) = (m,(x)&,,&,) for all x € M, m, being normal enforces ¢ to
be normal.
Conversely, if ¢ is normal, then

x — (m,(2)a, b), = p(b*za)
is WOT-continuous on M; for all a,b € M, where G denotes the class of a in
M/N, C H,; note that &, = 1, so that & = me(a)ép. Now, since &, is cyclic, i.e.,

T, (M)E, is dense in Hy,, we infer that z — (m,(z),n), is WOT-continuous on M;
for all §,n € H,. Thus, 7, is normal. |
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Definition 13.5: Let (M, 1) be a tracial von Neumann algebra. We call the repre-
sentation 7, : M — B(H,) the standard representation of (M, ) and we write

L*(M,7) = H, (=cl(. . (M) as N, = {0}).

The standard representation is normal (Theorem 13.4) and moreover faithful, since

7(z) = (7 ()&, &), for all @ € M, thus we may identify M with its image
7.(M) C B(L?(M, 7)), in which case M is said to be in standard form. Note that
5 =1i

is both cyclic and separating for M.
Remark 13.6: (i) A von Neumann algebra is said to be separable, if it has a
faithful normal representation on a separable Hilbert space. This generalises
(Definition 8.6), without changing the conclusions.

(ii) Let (M, 7) be a tracial von Neumann algebra. Then (M7, d) with

d(z,y) =12 =9l

is a complete metric space and the induced topology conincides with the strong
operator topology from B(L?(M,7)). For a tracial von Neumann algebra (M, 7),
the following are equivalent:

e M is separable,

e M is separable contains a SOT-dense sequence,

e L%(M,7) is a separable Hilbert space.

Example 13.7: Consider the tracial von Neumann algebra (M, (C), tr,) acting on
2
Cn. Tt is in standard form on L?(M,,(C),tr,) = C" = C" ® C" with

Tir, (Mn(C)) = M, (C) ®1 C B(C" @ C")
and ., (M, (C)) = 1® M, (C) C B(C" @ C"),

where 7y, (z) =z ® 1.

Definition 13.8: Consider a tracial von Neumann algebra (M, 7). The antilinear
unitary involution J: L?(M,7) — L?(M, 7) which is the extension to L?(M,T) of
the antiunitary isometry

Ji ="
for all x € M, the canonical conjugation operator on L*(M, 7). It satisfies J2 =1
and (J&,n), = (Jn, &), for all £,m € L?>(M,T).

Theorem 13.9: Let (M, 1) be a tracial von Neumann algebra in standard form on
L?*(M,7). Then JMJ = M' on B(L*(M, 1)) and Tap () := (&, &), defines a
faithful normal tracial state on M'.

Remark 13.10: For x € M we have L, := 7, (z) € B(L*(M, 7)) with L,§ = 2y for
all y € M. Similarly, we have R, € B(L*(M, 7)) with R,§ = v for all y € M.
Then JL,J = Ry~. Hence M’ = JMJ ={R, |z € M}.
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13 The standard representation of tracial von Neumann algebras

Definition 13.11: Let M be a von Neumann algebra.

(i) A (left) M-module is a Hilbert space H that comes with a normal represen-
tation 7: M — B(H). We write (H, ) or pH.

(ii) Let (H,7g) and (K, 7k) be two M-modules. A (left) modular operator from
H to K is an operator T € B(H, K) such that for all x € M it holds

T’ITH (l’) =TK (x)T

In other words: The diagram

H-— Lo

K
7w (z) lﬂ'x(aj)

H——K
T

commutes. The space of all modular operators from H to K will be denoted
by »B(H, K).

(iii) We say that pyH and p K are isomorphic (or equivalent), pyH = K, if
there exists a unitary operator in »; B(H, K).

Example 13.12: Let (M, 7) be a tracial von Neumann algebra.

(i) The standard representation of (M, 7) gives a “canonical” M-module L?(M, 7);
see (Definition 13.5).

(ii) We can produce “larger” M-modules by amplifications: H = L?(M,7) & K
for some (arbitrary) Hilbert space K; indeed

m M — B(H),  7(z)(®n) = (x§) @n
defines a normal representation. For example
L*(M,7)&C" = P L*(M,7)
i=1

and 7(z)(&1, ..., &n) = (&, ..., x&p).

(iii) For an M-module (H, ), we can construct a “smaller” M-module by
“cutting down” with any projection p € yyB(H), i.e., we take the Hilbert space
pH with the normal representation

e M — B(pH), z+— 7w (2)|pa € B(pH).
Note that pyBH = 7wy (M)'.

By combining these constructions, we obtain in fact all separable M-modules of a
separable type II; factor M.
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Theorem 13.13: Let M be a separable factor of type II, in standard form on
L?(M,T) for its unique faithful normal tracial state 7: M — C. For every sepa-
rable M-module rH, there exists an isometry v € yyB(H, L*(M,7) ® (*(IN)). In
particular, p := vv* € yB(L?*(M,7) & (?(N)) and

mH = 5 (p(L* (M, 1) & £2(IN))).

This defines a bijection between the set of equivalence classes consisting of isomorphic
separable M -modules and the set

P((M ® idgz(]N))/)/ ~ .
Remark 13.14: We have to deal with the type Il factor
mMB(L*(M,7) & (N)) = (M ®idpw) = M'® B(*(N))

where M’ is of type II; and B(¢?(IN)) is of type Il,. It carries a faithful normal
semi-finite tracial weight

TM! @TI‘: (M/®B(£2(IN))+ — [0,00]

where Tr: B(¢*(N)); — [0,00] is defined by Tr(z) := Y, .n(zen,e,) for any
orthonormal basis (e, )nen of £2(IN); see Exercise 4 of Sheet 5, where Hilbert-
Schmidt operators were introduced, i.e., z € B(¢*(IN)) with

2]z = Tr(z*2)? < cc.

Definition 13.15: Let M be a von Neumann algebra and define the set of positive
elements My := {zx € M | z positive} of M. A map Tr: M, — [0, 00] is called a
tracial weight, if

o Tr(z+y) =Tr(x) + Tr(y) for all z,y € M,,

o Tr(A\z) = A\Tr(zx) for all x € M4, A >0,

o Tr(z*z) = Tr(zz*) for all z € M.
A tracial weight Tr: My — [0, 00] is called

(i) semi-finite, if for all 0 # x € M, there is 0 # y € M, such that y < z and
Tr(y) < oo hold,

(ii) mormal, if for every increasing net (z))aea in M ™ converging strongly to
x € My it holds Tr(zy) — Tr(x),

(iii) faithful, if for © € M, it holds: “Tr(z) =0 < x =07

1We follow the convention 0 - co := 0.
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13 The standard representation of tracial von Neumann algebras

Remark 13.16: (i) Every type Il factor M is of the form N ® B(¢%(I)) for
some type II; factor N and an infinite set I and thus admits a faithful normal
semi-finite tracial weight Tr: M, — [0, 0], which is unique up to scaling with
A > 0.

(ii) In the situation of (i), we have
o Tr(P(M)) = [0, 0],
e For all p,q € P(M) it holds: “p = ¢ if and only if Tr(p) < Tr(g)”.

Definition 13.17: Let M be a separable factor of type II;. For every separable
M-module (H, ), we define its M-dimension (or coupling constant) by

dimy H := (rap @ Tr)(vv™) € [0, o0]
where v is chosen like in (Theorem 13.13).

Remark 13.18: Combining (Theorem 13.13), (Remark 13.14) and (Remark 13.16)
(ii), we conclude that (H,w) — dimy; H gives a bijection between classes of
equivalent separable M-modules and the set [0, c0].

Theorem 13.19: In the situation of (Definition 13.17), we have that

(i) dimy L2(M,71) =1,

(ii) dimps(D;c; Hi) = > ;e dimas Hy, if I is countable,

(iii) dimas pH = Tr(ary (p) dima H if 7(M)" € B(H) is a type II; factor.
Definition 13.20: Let N C M be factors of type II; (with 157 € N, i.e., subfactors).

We call
[M : N|:= dimy L*(M, 1)

the Jones index of N in M (note that L?(M,7y) is a M-module and thus, in
particular, a N-module).

Remark 13.21: Since L?(N,7n) C L*(M, 7ar) as Ta|n = Tn, we have the decom-
position L2(M, ) = L*(N,7y) @ L?(N,7y)*. Thus:

dimy L*(M,3) = dimy L*(N, 7x) + dimy L2(N,75)t > 14+0=1,
i.e.,, [M : N] > 1 and it holds [M : N] =1 if and only if M = N.

Example 13.22: (i) Let N be a type II; factor. N 21® N C M (C)® N = M,
then [M : N] = k2.

(ii) Let H C G be non-trivial countable discrete infinite conjugacy class groups.
Then [L(G) : L(H)] =[G : H].

Theorem 13.23 (Jones, 1983): Let N C M be factors of type II; with [M : N] < oc.
Then

[M : N] €[4, 00) U {4(:082 (7112) ‘ne ]N}

and all these values show up as indices of subfactors of the hyperfinite II; factor R.
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14 Type III factors

At the time of von Neumann, factors of type III were more or less an enigma. This
has changed totally with the work of Tomita (1967) and Takesaki (1970) on the
modular theory for von Neumann algebras and the subsequent classification of
type III factors by Connes (1973). We present briefly some of these pearls.

Let M C B(H) be a von Neumann algebra and suppose that there exists a cyclic
and separating vector £ € H. Consider the faithful normal state

o: M — C, x — (€, §).
Definition 14.1: We define unbounded antilinear operators on H by
So: H D D(Sy) == M¢{ — H, x€ — %€
and Fo: H D D(Fy) == M'¢ — H, y& — y*€.
They are well-defined since £ is separating for M and M’ (see Theorem 8.4).

Lemma 14.2: The operators Sy and Fy from are densely defined.
We have Fy C S and So C Ff, so that Sy and Fy are closable.

Proof: Since ¢ is cyclic for M, we see that Sy is densely defined. Since ¢ is also
separating for M = (M')’, it is cyclic for M’ by (Theorem 8.4), thus Fj is densely
defined. Take now z € M and y € M’'. We have then:

which shows S§ D Fy and Fj 2 Sy. We define:

e S to be the closure of S,
o [:=5"=5;.

(One can show that F' is the closure of Fp, which gives a perfect symmetry in M
and M’; this, however, is not necessary for the development of the theory).

Since Sy = Sy 1 it follows that S and F are injective with dense range and
S=8"1, F=F"1 |

Definition 14.3: Put A := S§*S = F'S, which is densely defined, positive and
invertible with A=' = SF. If S = JA'Y? is the polar decomposition (!), then the
operator J = J,: H — H is an invertible antilinear isometry satisfying J = J 1,
JAJ=A"'and F = JA7Y/2. We call A = A, the modular operator for (M, p).

This generalises (Definition 13.8) to the non-tracial setting; the modular operator

quantifies the failure of ¢ being tracial and the resulting difference between S and
J.
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14 Type III factors

Example 14.4: Consider the Hilbert space H = M,,(C) with the inner product
(x,y) = try,(y*x) and let M = M,,(C) C B(H) act by left-multiplication. Every
positive linear functional ¢: M — C is of the form ¢(z) = tr, (h,2) with a unique
density matriz hy, > 05 if ¢ is faithful, h,, is invertible and £ = h}/ 2
and separating vector with

(x€,8) = (xh}a/Q, hi,/2> = trp(hex) = p().

€ H is a cyclic

One can show that A,z = h¢xh;1 and Jox = z*.

We even have an analogue of (Theorem 13.9):

Theorem 14.5 (Tomita-Takesaki theorem): In the situation described above, we
have that
JoMJ, =M and A‘tMA - MVteR.

Note that for every a € C, a closed operator Ag can be defined by functional
calculus. In particular, t — Alt is a strongly contlnuous one-parameter group of
unitaries in B(H).

Definition 14.6: The strongly continuous one-parameter group
t— of == AdAY |y, of (x) = Az AT
of automorphisms of M is called the modular automorphism group of (M, ).

Proposition 14.7: The modular automorphism group {of |t € R} of (M, ) satis-
fies the Kubo-Martin-Schwinger boundary condition with respect to ¢ (abbreviated
KMS boundary condition), i. e.,

(i) o =pooaf forallteR,

(ii) For all z,y € M, there is a bounded continuous function F: cl($) — C for
$:={z¢€C|0<Im(z) <1} which is holomorphic on S such that for all
t € R it holds:

F(t) = ¢(of (x)y) and F(t+1i) = p(yof (z)).
(In fact, this determines o¥ uniquely).

Definition 14.8: Let M be a separable factor. We put
m{Sp )| ¢: M — C is a faithful normal state}.

For Sp(A,) consider M = 7,(M) C B(H,) for the cyclic representation (H,,, m,, {,);
see (Theorem 13.4).

78



Theorem 14.9 (Connes, 1973): Let M be a separable factor. Then:

(i) If0 € S(M), then M is of type I1I,
(ii) If M is of type III, then S(M)\ {0} is a closed subgroup of Ry = (0,00);
thus, precisely one of the following cases occurs:
o M is of type Iy, i.e., S(M) ={0,1},
o M is of type III,, i.e., S(M) = {0} U{\" | n € Z} for some 0 < A < 1,
o M is of type III;, i.e., S(M) = [0,00).

Example 14.10: Take 0 < A < 1. We define o := A/(1 + ) € (0, 3) and

a a
ox: My(C) — C, ©x (( L1 M2 )) =aar1 + (1 —a)ass.
a2,1 Aa22

The Powers factor (Powers, 1967) given by

R = Q) (Ma(C), 1)

i€IN

as an infinite tensor product, is of type III,. This construction is analogous to
Exercise 2 of Sheet 10.
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15 Universal C'*-algebras

A C*-algebra is a Banach algebra endowed with an involution and a norm, that
satisfies the C*-condition. This axiomatic definition allows for a universal construc-
tion:

Construction 15.1: Let E = {z; | ¢ € I} be a set of generators, I an index set.
Let P(E) be the involutive C-algebra of non-commutative polynomials in £'U E*,
where E* 1= {x} [i € I}, (Aay, - x4,)" 1= Aaf_--- ] . Hence

P(E) = ({z7} - 2pk | i € {1,7}}).
Let R C P(F) be a set of relations. Let J(R) C P(E) be the two-sided ideal in
P(E) generated by R. Put
A(E, R) = P(E)/J(R),

the universal involutive algebra with generators E and relations R. For x € A(E, R),
put
|z|| :== sup{p(z) | p is a C*-seminorm on A(E, R)}.

Here p is a C*-seminorm if and only if p(Azx) = |A|p(z), p(z + y) < p(x) + p(y),
p(ry) < p(x)p(y) and p(z*z) = p(x)? for all z,y € A(E,R), A € C. If now
|z|]| < oo for all x € A(E, R), put

C*(BIR) = ey (AE, R)/{z € A(E,R) | |}« = 0}).
the universal C*-algebra with generators E and relations R.

Remark 15.2: (i) The principle used in is more or less the
same principle as in “{non-commutative polynomials in = and 1} = C*(z,1) C A"
(ii) “Relations” really means: If 7z — 1 € R, then zjz; =1 in C*(E|R).
(iii) If A is any given *-algebra, C*(A) := clj(A/{z | |[z]| = 0}), where
||| := sup{p(z) | p is C*-seminorm on A}; the so called enveloping C*-algebra of
A, if ||z|| < oo for all z € A(E, R).

Proposition 15.3: The universial C*-algebras have the following universal property:
Let B be a C*-algebra, E' := {y; € B | i € I} C B be a subset satisfying the relations
R. Then there is a unique *-homomorphism ¢: C*(E|R) — B with ¢(x;) = y;.

Proof: Consider the following diagram:

A(E, R)
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There is a so called replacement homomorphism ¢g, since ¢o(R) = 0 and this
replacement homomorphism is continuous (by the definition of ||z|; p(z) =
lloo(x)|| 5 defines a C*-seminorm and it holds |¢o(z)|| < |lz]|), thus extends
to a *-homomorphism ¢: C*(E|R) — B.

Lemma 15.4: If there is a constant C > 0 such that p(z;) < C for all C*-seminorms
p on A(E,R) and all i € I, then C*(E|R) exists (i.e., it holds ||z| < oo for all
x € A(E,R)).

Proof: Let z = "' - - % (a; € {1,*}) be a monomial and p(z) < C*. Then this

also holds for polynomials. [ |

Proposition 15.5: Let $' := {\ € C | |\| = 1}. Then
C($") = C*(u,1 | u*u = uu* = 1).
Hence, C(S') is the universal C*-algebra generated by a unitary.

Proof: C*(u,1) = C*(u,1|...) has E = {1,u} and the relations u*u — 1, uu* — 1,
lu —u, ul —u, 11 — 1, ete. It exists, since p(1)? = p(1*1) = p(1) < 1 and
p(u)? = p(uru) = p(1) < L

The identity function defined by z(¢) = ¢ for t € $! and 1(¢) = 1 for t € $! satisfy
z*z = zz* = 1. Hence, by the universal property, there is *~homomorphism

@o: C*(u,1) — C(8"),
U —> 2z,
1+—1.

On the other hand C*(u, 1) = C(Sp(u)) by the theorem of Gelfand-Naimark (or
rather the functional calculus) and Sp(u) C $!. Hence we have the diagram

)

C*(u, 1) C(SY)

v
¥
[~ /)/\;S

C(Sp(u))

‘s\e*?@

It holds by functional calculus
pop(u) =1y(z)=u,
hence ¢ is injective; in total we conclude that ¢ is an isomorphism.

The intuition is: A “universal unitary u” should have the maximal spectrum, so
Sp(u) = $'. Hence C*(u,1) = C(Sp(u)) = C($Y). [ |

81



15 Universal C*-algebras

Example 15.6: The universal C*-algebra C*(z|x = 2*) does not exist! There are
elements y = y* € B with arbitrarily large norm, hence p(z) = ||y|| can be large,
hence ||z|| = oo for some = € A(z,z = z*).

Proposition 15.7: For n > 2, the following are isomorphic:

(i) Mn(C),
(i) C*(eijriyi=1,...,n|ef; = eji eijer = 0jkeiiVi,j, k1),
(111) C*(I‘l, ey Iy | .T;‘Ij = (52'7]'261).

Proof: “M,(C) = C*(e;j,i,i = 1,...,n | e} ; = eji,€ijer1 = djxei1 Vi, j, k1)
Put E;j == (0 1051)1<ki<n € Mn(C). These E; ; satisfy the relations stated in
the universal C*-algebra in (ii), thus there is

0: C"(eijyii=1,...,n|e;; =ejieijens = 0jkeir1 Vi, j, k1) — M,(C),

eij — Eij
by the universal property, which is surjective. Since the universal C* algebra
C*(eij,t,i =1,...,n | €l = €jisCijerl = 8;keii Vi, j, k,1) is n®-dimensional,
and so is Mn((D)7 is injective.
Note that C*(e;j,4,i = 1,...,n | €] ; = eji,eijex1 = §jx€i1 Vi, j, k1) exists,

since p(ei;)? = plej ei5) = plej;), plej;)* = plej ;) € {0,1}.
The other 1somorphy is an exercise on Sheet 12:

»
“—
C*(es5) C*(x1,...,7p)
~
%]
such that @ o 1/} = idC*(:vlq,...,:E“L..) and 1/) oY= idC*(ei,j71§i7j§n\...)~ [ |

Remark 15.8: On Sheet 11 + ¢ in Functional Analysis I, we proved that M, (C) is
simple. Hence, if B is a C*-algebra with yi,...,y, € B and y;y; = 0; ;41, then
M, (C) = C*(y1,.-.,yn) C B, because for

P Mn(C) = O*(xh s 7xn) — C*(yh s ayn) CB
we know that ker(y) < M, (C); hence ker(p) = {0}.

Proposition 15.9: The following C*-algebras are isomorphic:

(i) The compact operators K(H) on a separable Hilbert space H,
(ii) cr ( i,js ¢ 7]€IN‘ _6]1761j6kl_6]k61l)
(ii)) C*(wiyi € N | af; = 0y a1)

In (ii) and (i) we may replace N by an arbitrary infinite countable set.
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Proof: “(i) = (ii)”: Let (e,)nen be an orthonormal basis of H. Define the operators
fi,jlen) == 0 ne;. Then f; ; € K(H) since it is of finite rank. By the universal
property, we find

QOC*(GZ’J,Z7JE]N|)—>K(H), ei,j}_>fi,ja

furthermore ¢ is surjective, since the finite rank operators are dense in K(H). It
remains to be shown that ¢ is injective. Put therefore

M, = C*(ei ;| 1<i,5 <n) C C%(esjpij €N..).

By (Proposition 15.7) and (Remark 15.8), we have M,, = M,,(C). This shows that
©|n, — K(H) is injective, since ker(p|ns, ) < M,, = M, (C); thus ¢|ps, is isometric.
Now as ¢ is isometric on the dense subset |, o Mn € C*(e;54,5 € N[ ...), ¢ is
isometric on C*(e; 5,4, € IN|...).

“(if) = (iii)”: Exercise on Sheet 12. [

Remark 15.10: K (H) is simple (this is an exercise on Sheet 12), so the analog of
(Remark 15.8) holds true.
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16 Example: Toeplitz algebra 7

Definition 16.1: We denote by T := C*(v,1 | v*v = 1) the universal C*-algebra
generated by an isometry, the so called Toeplitz-algebra.

Theorem 16.2: (i) The ideal (1 —vv*) in T (the ideal generated by 1 — vv*) is
isomorphic to K(H) for some separable Hilbert space H and we have

T/(1—wvv*) = C*($).

In other words, the sequence 0 — K(H) — T — C($') — 0 is ezact.

(ii) The map

0: T — C*(S) C B(£*(IN), v— S,
where S denotes the unilateral shift (defined by Se,, = Se,11), is an isomor-
phism.
Proof: (i) We want to prove the assertion in small steps:
(1) 1 —wvv* €T is a projection.
(2) (1 —wvv*) = cl(span{vF(1 — vv*)v*! | k,l € N}) =2 AC T.

Proof (of (2)): “2” is clear. “C”: By construction, A is a closed vector space. It
holds vz, v*z € A for all z € A since v*(1 —vv*) =0, thus yz,zy € Aforally € T
and ¢ € A, i.e., A is an ideal. |

(3) fry = vF(1—vv*)v*! satisfy the relations of K(H) = C*(e; ;,i,7 € No | ...),
as we have the following:

fiifenl = V(1 — vv* )k (1 — vo* ) = j,kvi(l —vv* ),
Thus there is an injective map
n: K(H)‘HT, 6i’j}ﬁfl"j

with n(K(H)) = (1 — vv*) by (2).
(4) We have the following diagram:

T/{1 —vv*)
But ¢ ((1 — vv*)) = 0, hence there is a map

B: T/l —ww*) — C($Y), 7(v) — u
thus o 8 =id, Boa =1id thus C($}) = T /{1 — vv*).
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(ii) As for part (i), we want to show the assertion in small steps:

(1) ¢ exists (since S is an isometry) and is surjective. We need to show that
le(@)|| = ||lz||, but ||z|| = sup{||p(z)]| | p irreducible representation of T} (refer
to Remark 5.18 (iv)), hence we need to show ||p(z)]| < ||¢(x)] for all irreducible
representations p: T — B(H) (of course it holds ||e(z)|| < ||z|)).

(2) Claim: Let p: T — B(H) be irreducible, p(p) # 0 with p := 1 — vv*. Then
p and ¢ are unitarily equivalent and then ||p(z)|| = [|[Up(z)U*| < |l¢(2)]-

Proof (of (2)): We have: For all z € T there is A € C such that pzp = Ap (because
if z = v*v*! is a monomial with k,l € INg, then

prp = (1 — vo*)o*o* (1 — vv*) = dk.001,0p

which transfers to polynomials and limits. Thus there is a state f: 7 — C,xz — A
with pzp = f(x)p for all x € T. Then for all x € T we have

(mr(@)E5,81) = f(x) = (p(z)er, e1),

as (p(x)er, e1) = (S¥S*er, e1) = 60,400k = f(z), if 2 is a monomial, which again
transfers to polynomials and limits. Therefore, 7 and ¢ are unitarily equivalent.
Since p(p) # 0, we find £ € H, such that ||| =1 and p(p){ = &. Then

(p(x)€,8) = (p(z)p(p), p(P)€) = (p(pzp)E, &) = f(2){p(P), &) = f(=),

hence also p is unitarily equivalent to f. ]

(3) Let p: T — B(H) be irreducible p(p) = 0. Then p(v) is a unitary. Moreover,
(1 —85*) aC*(S) is isomorphic to K(H). Hence 7: C*(S) — C*(S)/{1 — SS*)
satisfies that 7(S) is unitary. It remains to be shown that Sp(7(S)) = $', as then
we have the following diagram

T "~ C*(p(v)) € B(H)

C*(8) —=C"(9)/(1 = 557) C(Sp(n(S)))

and thus [[p(z)|| < [[a o mo p(z)]| < [o()]-
Proof: Let A\ € $'. Consider d()\)e, := A"e,, then d(\) € B(H) is unitary with

d(N\)* = d(}). We have d(A\)Sd(\)* = AS thus
B: C*(S) — C*(S),  x— d(N)azd(\)*

is an automorphism with 5({1 — S55*)) C (1 — §S*) and S5(S) = AS. Hence we
have the map

C($Y)

o

B: C*(8)/(1 = 88*) — C*(S)/(1 - 85%),  B(n(S)) = An(S), |

which shows Sp(m(S)) = Sp(3(w(S))) = ASp(n(S)) for all A € $', thus finally
Sp(n(S)) = §'. m
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16 Example: Toeplitz algebra T

Remark 16.3: L2(S') has the orthonormal basis " := (z + 2") for n € Z. One
can show that

T —A{Ty+k|feCB"), ke K(L*(S")}, v T,
where Ty := Py2My, Ms(g) := fg for g € L*($') and H? := span{e, | n >

0} C L?(8'). Oftentimes, 7 is introduced in this way. {Tf +k | f € C($!),k €
K(L?($1))} are called the Toeplitz operators.
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17 The (irrational) rotation algebra Ay

Definition 17.1: Let ¥ € R. Put
Ay = C*(u, v unitaries | uv = e*™Vyu)

and call Ay rotation algebra. For 9 € R\ @, we call Ay irrational rotation algebra.

Let in the following A := e?™1V,

Remark 17.2: (i) Ay exists, since u,v are unitaries.
(i) Ay—o = C(T?), where T? = §! x §! C C? is the 2-torus, via

u—> ((21,22)|—>21), T— ((z1,22)|—>z2).

The existence of this *~-homomorphism is granted by the universal property and it is
an isomorphism since Ay—g = C(Spec(Ay—g)) = C(T?) where the first isomorphy is
ensured by the first fundamental theorem of C*-algebras and the second isomorphy
holds, because ¢ € Spec(Ay—g) is determined by the values of ¢(u) € $! and
o(v) € St

Hence, for ¢ # 0, we may view Ay as a non-commutative function algebra on a
“non-commutative torus T3

(iii) ¥ ¢ Q behave very differently from ¢ € Q; that’s why mostly the irrational
rotation algebras are studied (see Sheet 13 and Theorem 17.xx).

(iv) The non-commutative tori are examples of non-commutative manifolds in
A. Connes “non-commutative geometry”, an analog of differential geometry. Such
a non-commutative differential geometry is supposed to be relevant for quantum
physics (“At a deep and perhaps fundamental level, quantum field theory and
non-commutative geometry are made of the same stuff.”, Gracia-Bondia et. al,
page 522), for instance for the quantum Hall effect.

Proposition 17.3: Ay has some concrete representations (i.e., Ay #0).

(i) Let S € B({*(Z)) be the bilateral shift and consider the map d defined by
d(N)ey, := A\"e,. We have

7 Ay — B(*(Z), ur— d(N\),v— S.

(ii) Let @, v be the following operators:

a: L*(8Y) — L*(SY),  (af)(t) = f(\),

v LQ(SI) — LQ(Sﬁl)7 (0f)(t) :=tf(2).
We have

7 Ay — B(LA(SY)), U — 0,0 —> D.
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17 The (irrational) rotation algebra Ay

Proof: (i) S is unitary and as d(\)* = d(X), d()\) is unitary as well. Now it
holds

d(N)Se, = d(N)eps1 = N e, = ASd(Ney,,
hence 7 exists.
(ii) Apply @? to e, := (z — 2™). [ |
We ask: Are the representations in isomorphic? Does
C*(S,d(\) = C*(a, D)

hold? Are the maps 7 in injective? The answer to all these
questions is “yes (if ¥ ¢ Q)”, and the reason for this is that Ay is simple (for
¥ ¢ Q), which we now want to show.

Definition 17.4: Let A be a unital C*-algebra.

(i) If B C A is a C*-algebra such that 14 € B and ¢: A — B is positive, linear,
unital and p? = @, we call ¢ a (conditional) expectation. ¢ is called faithful,
if for all @ > 0 with ¢(a) =0 it holds a = 0.

(ii) 7: A — Cis a (normalised) trace, if 7 is positive, linear and it holds 7(1) = 1,
7(ab) = 7(ba) for all a,b € A. 7 is faithful, if for all @ > 0 with p(a) =0 it
holds a = 0.

Proposition 17.5: Let ¥ ¢ Q.
(i) For &, pu € SY, the map
pen: Ay — Ay, U —> Eu, v —> Qo

is an automorphism (i.e., a *-isomorphism).

(ii) The maps @1,p2: Ay — Ay defined via

1 1
©1(x) ::/ p1 2=t () dt, V2 ::/ perit 1 () dt
0 0

are contractive (i. e., ||p;:|| < 1), faithful expectations.

(iii) We have ®1 (Ag) g C*(u) g Aﬁ, Lpz(Aﬁ) = C*(U) g Aﬁ, <P1|C*(u) = idC*(u)7
02|y = idex(v),

(iv) We have for any a,; € C (where only finitely many ay; # 0)

k1 k k1 l
<P1( E Qg U U) = E a0l , @2( E A, 1U U) = g Qo,1v
keZ k,lcZ

k,IEZ IeZ
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(v) For v ¢ Q it holds

1 &~ I &

— | Iy — | Iy

1(x) nh_}n;o 1 g w xuT?, wa(x) nh_}rrolo Tl E vavT.
j=—n j=—n

This statement is false for 9 € Q!

Proof: (i) pe,, exists by the universal property and because Pe 70 Pep = 1d, pep
is an automorphism.

(ii) Elements in Ay may be approximated by Ek,leZ ak,lukvl with ar; # 0
finitely often. For x € Ay, the map

fo: T2 — Ay, (& 1) ¥ pe ()

is norm continuous, since for = >} ,__axuFv! it holds

—-n

n

[ fo(€rs ) = folCopa) | |68 0k — Ebpbllars| — 0 for (€1, 1) = (2, p12),
k,l=—n

thus
go: [0,1] — Ay, t— fu(1,€*™)
is also norm-continuous, hence %2?21 9z (t;) — fol g:(t) dt =: ¢1(x) exists as a
limit of Riemann sums (for 0 <ty <--- <, =1).
To see that ¢ is contractive, we notice that

1 1
ler@l < —|| 3 oy eomies @) < = Sllall = ol
J J

1 is positive because for > 0, py c2rit(x) > 0, hence ¢q(z) is positive as limit
of positive elements. One checks, that ¢ is linear, unital and faithful.

Now, by (iii), p1(1(2)) = id|c-(w) (p1(2)) = ¢1(2), as p1(z) € C*(u).

(iii) It holds

1 1 1
o1(vh) = / p1e2mic (V) dt = / eZmiltyl gt = (/ e2milt dt) vl = 8o,
0 0 0

hence ¢ (uFv!) = fol p1ezmie (uFl) dt = uF 1 (vh) = 6o 1u”, so p1(Ay) C C*(u) and
¢1|C*(u) = ldc* (u)
(iv) This was also shown in (iii).

(v) We compute

n n

1 . ; 1 ; .
o T 1 Z W (uFoyuI = o T 1( Z )\ﬂ)ukvl — SouFvl = @y (uFoh).
j=—n j=—n |
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17 The (irrational) rotation algebra Ay

Corollary 17.6: Let ¥ ¢ Q. The map
TZ:(pl Oy = Y20P1: Ag—>c

is the unique unital faithful trace on Ay. We have T(Zk,leZ ak,lukvl) = ag,, this
is “the (0,0)-th Fourier-coefficient”.

Proof: It holds for k,1 € Z:
P1o2(u ) = 801 (v)) = Ok,061,0 = o1 (uFl),

hence 7 is well-defined. Furthermore 7 is linear, positive, unital and faithful as a
composition of two maps with these properties, also

T((ukvl)(umvn)) _ )\—lmT(um—&-k,Ul—&-n) _ 5m+k,05l+n,0)\_lm

= A\ nk7(u™ ) = 7 (uWmu) (uFot)).
One can check, that 7 is unique. ]
Theorem 17.7: For ¢ ¢ Q, Ay is simple.

is false for ¥ € Q, see Exercise sheet 13.

Proof: Let 0 £ [ < Ay, hence we find 0 #x € I,i.e., 0 # x*x € I. Then

* s 1 - J ok —7
0 # ¢1(x m):nll_)n;02n+1 Z watzuT! €1,

j=-n

but 0 # 7(x*z) = popy(z*x) € I, thus 1 € I, i.e., I = Ay (because 7(z*x) € C
and ¢ (x*z) € I). [ ]

Remark 17.8: It holds ¢ = £9 (mod Z) if and only if Ay = Ay (“=" is trivial,
“«<” requires certain Powers-Rieffel projections).
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18 Cuntz-Algebra

Definition 18.1: The Cuntz-Algebra O,, for 2 < n < oo is defined as
O, = C*(S1,...,S, isometries | >1" | 5,5 = 1),
for n = oo put Ou := C*(S1, Sy, ... projections | S}S; = d; ;).

Remark 18.2: (i) O, is the structure of decomposing a space into n copies.

Sy | S18¢ Sy | Sys:

S0, | S8, 5585
Sy | S293
S0 | 82555553

(ii) J. Cuntz introduced these C*-algebras in 1977. They are important (counter-)
examples for certain questions. But they are also building blocks of the theory of
C*-algebras via theorems like:

e Let A be a separable C*-Algebra. A is exact if and only if there is an
embedding A — Os.

o Let A be a C*-algebra. A is a unital, simple, separable, nuclear C*-algebra if
and only if A 2 A® O,.

e Let A be a C*-algebra. A is purely infinte if and only if A 2 A ® O.
The above stated theorems are called the Kirchberg-Phillips theorems.
(iii) Also, it has nice properties, like being purely infinite (a strengthening of

being simple). We will prove this property in this chapter.

Definition 18.3: A word in O, is S, = S;, ---S;,, where u = (i1,...,ix) €
{1,...,n}* is a multi-index. We call |u| = k the length of the multi-index .
Lemma 18.4: (i) It holds S} S; =6, ;,

ii) Let p,v be multi-indices with = |v|. Then S*S, = 6,..,, where §,,, is
M H I 23 Hs
defined standing to reason.

(iii) Let p,v be multi-indices. Then we have the following:
(1) 1l < o], then
S;SV:{Snu/v ifV:l“/a

0, otherwise.
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18 Cuntz-Algebra

(2) If |u| > v, then
858, = {SZ/» if =y,

0, otherwise.

Proof: (i) The case i = j is clear: S;'S; = 1, because S; are isometries.
For i # j, we have S;Sf + S;S7 < >, Si.S; = 1, thus S75;575; < 0.
Hence

SE(SiSF + 5,57)8; < 7Sy = 87 (1 + 579,;555:)8; = 1

but as S;(SJS]*Sl = (SJ*SL)*(S;SI) > O, we get that (S;SZ)*(S]*SZ) = O, SO
finally S*S; = 0.

(ii) Exercise on Sheet 13,
(iii) Exercise on Sheet 13. [ |

Proposition 18.5: (i) For k € IN define
Fi =span{S,S; | |u| = |v| =k} C O,.

Note that FJ* = M, (C), here SFS¥* < e1 1.
(i) The set {S,S; | p,v arbitary} C O, is dense.

Proof: (i) Put ey, := S,S; € Fj'. Then we have the relations e}, = e, as well
as €u€pr = S,955,8% = Supeus. Due to [{p € {1,...,n}*}| = n* we obtain that

("2} Mnk(C) —>-F7’§7 e;w'—>S/LS:
is a *-isomorphism.

(i) Monomials in O,, are of the form S, S} by (Lemma 18.4). [

Lemma 18.6: (i) Let k € N. Then

Y SS;=1
& multi-index,
15|=k
(ii) Forl <k, we have F* C F}.
Proof: (i) This is exercise 2b) on sheet 13.
(i) Let S, Sy € F/* where | < k and |p| = |v| = [. Then by (i) it holds

> 8,8:8;8; € F.
¢ multi-index,

|6|=k—1 [ |
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Lemma 18.7: Let pu,v be multi-indices with |u|,|v| < k, |u| # |v|. Then, for
S, = SkSs,,

S3(8,57)Sy = 0.
Proof: Exercise 2 ¢) on Sheet 13. |

Lemma 18.8: Let k € IN. Then there is an isometry w € O,, such that

(i) wz =zw for all x € F},

(ii) For all multi-indices p,v with |p|, |v| < k, it holds

O (i
Proposition 18.9: There is a faithful expectation

v: O — F",
where F™ = cl(span{F}' | k € N}) = span{S,S; | |u| = |v|}, with

S#S;’ Zf |/~L| = ‘V|a

0, otherwise.

QD(S“S:) = {

and ¢(x) = w*zw € F}} for x € span{S,S; | |u|,|v| < k} and w from (Proposition
18.8).

Proof: For ¢ € $!, the map
pc: Op — Op, Si — (S,
is an isomorphism with peope = id. For z € O,,
fo: $' — Oy, ¢ — pe(x)
2rit)

is norm-continuous (like in the Ay-proof). Then ¢(z) := fol fz(e dt is positive,

linear, unital and faithful, where again
1 <& . 1 .
- wa(ethj) N / fw(e2ﬂlt) dt .
n < 0
Jj=1
It holds
1 1
0(S.Sy) = /0 peanit (S,5)) dt = ( /0 et =) dt) SuS} = 1l 1| SuSs,

thus ¢* = ¢ and ¢(S,S;) = w*S,S;w and ¢(5,S};) € Fi* by (Lemma 18.6). M
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18 Cuntz-Algebra

Definition 18.10: Let A be a unital C*-algebra. A is purely infinite if and only if
for all 0 # « € A there are a,b € A such that axb = 1.

Remark 18.11: (i) If A is purely infinite, then A is simple. To see this, let
0 # I < A be an ideal. Because A is purely infinite, for 0 # x € I, there are a,b € A
such that 1 =axbe I, i.e. [ = A.

(ii) The notion “purely infinite” comes from von Neumann algebras: If M is a
von Neumann algebra of type III, then M has no finite projections. Let now A
be a C*-algebra. A is purely infinite if and only if it holds: “For all hereditary
C*-subalgebras B C A (i.e.,if 0 < a < band b € B, then a € B), B has a finite
projection”.

Theorem 18.12: O,, is purely infinite (and thus in particular simple).

Proof: (i) Let 0 # =z € O,, then z*z 2 0, also p(z*z) = 0. Without loss of
generality, ||p(z*z)| = 1.

(i) Find y = y* € span{S,,S} | u, v arbitrary} close to z*, z, i.e., [[z*z —y| < %.
This is possible: Because cl(span{S,S; | p,v arbitrary}) = O, we find yo €
span{S,,S;; | p, v arbitrary}, such that ||z*z — yo|| < 1; then put y := 27 (yo + y5).

(iii) Find z € O, such that zyz* = 1.

Proof: We have [[¢(y)| > 2 since

L= llp2)|| < lle(z"z =yl + @) < i + e @)l-

Let now y = > ; a;5,,5; and k > max{|w], |v;|}. Thus there is an isometry

Hi~ v
w € O, with p(y) = w*yw. Since ¢(y) € Fi = M,»(C), we may view ¢(y) as a
matrix which we can diagonalise, thus there exists a one-dimensional projection
e € Fj! such that ep(y) = ¢(y)e = x|lv(y)|le and a unitary u € F}} such that
ueu* = S¥St* (corresponding to e; ;). Now put
o — % ok *
2= ()2 S uew™.

It holds z € O,, and ||z|| < %, because

1 1 2
z|| < 2|5 R uew*|| < T —,
2l < [l =157 I < lle@)l 7

and zyz* = 1, because

2y = ()|~ S uew* yweu S = - = 1. n
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(iv) zxz*xz* is invertible, since

1
=-<1
3

N

11— za"z2™|| = [l2(y — 2”2)2"[| < |l2]*ly — 2"l <

W

Put a := b*z*, b:= z*(zz*x2*) "2, then

axh =b*x*xzb = (z:c*xz*)*%z:c*acz*(z:c*:rz*)*% =1.

Remark 18.13: (i) There is a generalisation of O,, to graph C*-algebras.

(ii) O, 2 Oy, for n # m.
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19 Group ('*-algebras

Motivation: Let G be a locally compact group, furthermore let G be abelian. Then
G = {¢: G = T C C group homomorphism}

is the dual group of G. G is again an abelian locally compact group. Pontrjagin
duality states that

G — G, T — evy,

is an isomorphism of topological groups. Hence G and G are dual to each other.
For example we have the following dual groups:

«Z=T (think of the Fourier transformation),
o Z/nZ = 7/nZ,
e R=R.

What about non-abelian groups G? Then G has too little information and is no
group in general. Instead, consider {G — B(H) unitary representation} — note
that if G is abelian and dim H = 1, then {G — B(H) unitary representation} = G.
By some Schur-Weyl / Tannaka-Krein / Peter-Weyl duality, we may reconstruct G
from its representation theory.

Consider C*(G) or C?, 4(G) whose representation theory is intuitively linked
with the representation theory of G, i.e., group C*-algebras arise from the idea
to study the representation theory of groups by means from C*-algebra theory.
In fact, this was one of the reasons for introducing C*-algebras as a concept (see
J. Rosenberg, C*-algebras and Mackey’s theory of group representations, 1994 in
Doran, R (ed.): C*-algebras 1943-1993: A fifty year celebration, 1994).

By the way, one could also solve the problem of finding Pontrjagin duality in the
non-abelian case by the following:

Sketch missing

which leads to topological quantum groups.
In conclusion: C*(G), C 4(G) help to understand the representation theory of
groups, but also they provide a huge class of examples of C*-algebras.

Definition 19.1: Let G be a locally compact group. A unitary representation of G
is a group homomorphism

m: G — W(H) := {u € B(H) unitary}

such that
G — H7 g — W(g)f

is continuous for all £ € H, i.e., 7 is continuous in the strong operator topology.
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Remark 19.2: On $(H), the strong— and the weak operator topology coincide.
To see this, consider a net (ux)aea in U(H) such that uy —wor u. Then

[uné — ué|l® = [[uaéll® — (ur&, ué) — (ug, uré) + [luglf?
— 1€l = [lugl|® = Juéll® + 11€]1> = 0.

Theorem 19.3: Let G be a locally compact group. Then there exists a left-invariant

Radon measure (dt or ug) on G, unique up to a multiple by a constant. Hence for
all s € G and f € LY(G,dt) it holds

/Gf(t)dt:/af(st)dt

dt respectively pug is called the Haar measure.

Proof (idea): Construct on C.(G) := {f: G — C continuous, supp(f) compact} a
positive linear functional A: C.(G) — C such that A(f) = A(sf), where we denote
sf(t) := f(st). By the Riesz representation theorem, there is a measure pg such

that [, fduc = A(f). [ |

Remark 19.4: (i) If G is discrete, the Haar measure on G is the counting measure
(up to normalisation pg({e}) =1).

(ii) If G is compact, one usually normalises pug(G) = 1.

(iii) In case G = R", the Haar measure coincides with the Lebesgue measure.
Proposition 19.5: The space L'(G) := L*(G,dt) is a *-Banach algebra via

(f*g)(s / fFg(t™s f(s)=As)" (s, Iflh ¢=/G\f(t)|dt
for f,g € LY(G) and s € G. Here, A: G — Ry is the “modular function” with
e (Es) = A(s)ua(E), where Eg := {ts | t € E} (note that ug is left-invariant, i. e.,

e (sE) = pa(E), but not right-invariant). G is called unimodular, if A(s) = 1.
f % g is called the convulution of f and g, which shall be the product on L'(G).

Proof (Sketch): For f,g € L'(G), Fubini’s theorem yields
I ol = [ 17 a(s)l s

< [ [1ranatsiasar= [ 5at [ lo(s)1as = 1 ol

thus ||-||; is submultiplicative with resect to the convolution and f x g € L*(G).
A is a group homomorphism, thus

Fr(s) = AT (571 = A(sTHAGBTH T (s) = f(s). u
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19 Group C*-algebras

Remark 19.6: (i) If G is abelian, discrete or compact, then G is unimodular.

(ii) If G is discrete, then pg is the counting measure and for characteristic
functions d;, t € G, we have

(Gty * 62,)( Z 81, (9)01, (97 's) = Ot1,t2(8)-
geG
More generally,

(Zai‘sti) (Zﬁj(sj) = Zaiﬁjéti,sj-v
i J i,

thus convolution corresponds to multiplication of indices; furthermore 6% = §,-1.

(iii) We always have that C.(G) C L'(G) is dense (the Haar measure is finite
on compact sets).

(iv) Let G be discrete. Then
CG = { Z agg : ag € €,y # 0 for finitely many g}
geG

is called the group algebra, that becomes an algebra with the multiplication
(S 0u0) (32 50m) = Y ot
g h g,h

It holds CG = C.(G), hence L'(G) is the completion of CG to a Banach algebra.
There is an involution on CG via §; = d -1 (extend linearly).

Proposition 19.7: Let G be locally compact.

(i) G is discrete if and only if L*(G) is unital; L*(G) is unital if and only if
ua({e}) #0 (0. then is the unit),

(ii) G is commutative if and only if L*(G) is commutative.

Remark 19.8: (L'(G),||-|[1) is no C*-algebra (consider for instance the function
f = =814 0+, then |[f||> = 9, but || f*x f|| < 5). Still, for any *-Banach
algebra, there are two canonical way to turn it into a C*-algebra (see Dixmier,
2.7.1).
Definition 19.9: Let G be a locally compact group. Put for f € L1(G):

1£]l == sup{||=(f)|| | = representation of L'(G)} < || f]:-

The completion of L!(G) with respect to this norm is the full (or mazimal) group
C*-algebra C*(G) or Cy,(G) or CF(G).
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Proposition 19.10: Let G be a locally compact group.

(i) Every unitary representation w: G — B(H) induces a representation 7 of
LY(G).

(ii) The left regular representation
X G — B(L*(G)),  (M)H)(t) = f(s7't)

has an extension \ to a faithful representation of LY(G).

(iii) ||| from is indeed a norm.

Proof (Sketch): (i) For f € LY(G) put #(f) := [ f(t)w(t)dt, i.e.,

(7€, m) :=/Gf(t)<7r(t)g,n> dt.

This 7 is indeed a representation.
(if) Use (i) and check for faithfulness.

(iif) Let 0 # 2z € L*(G). Then A\(z) # 0, but as A\(z) appears in the supremum,
lz|| # 0. The rest is clear, because the supremum is taken over C*-seminorms. Ml

Definition 19.11: The reduced group C*-algebra C7, 4(G) or C;.(G) or C}(G) is
given by ~
rea(G) = cl(M(LY(G))) € B(L*(G)).

We always have a homomorphism C*(G) — C}: ;(G) which is an isomorphism if
and only if G is amenable and L(G) = C,4(G)" C B(L?*(Q)).
Remark 19.12: Let G be discrete.

(i) Then G is locally compact and the Haar measure is the counting measure.
Also, G is unimodular.

(ii) We can define C;:

max

(@) = C1||.H(CG) with the norm
||| := sup{||7(z)]|| | 7 is *-representation of CG} < oo,

and Ct ., = clj (L} (G)) from coincides with this definition, because

CG = C.(G) C LY(G) is dense.

(iii) We have Cp,.«(G) = C*(uy, g9 € G | ug unitary, ugup = ugn, uy = ug-1),

max

where u, = 1 in the universal C*-algebra.

Proof: By the universal property, we have a map

¢: C*(ug, g € G | ug unitary, ugup = ugn, uy = ug-1) — Ch . (Q), ug — dg.
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19 Group C*-algebras
Note that ucug = uge = ug, ug = U, thus u. is the unit. ¢ is surjective, since
CG Cim(p) and CG is dense. For the injectivity of ¢, let
7 Cx (ug, g € G | ug unitary, ugup = ugn, u, = ug-—1) — B(H)
be a faithful representation. Then
a®: G — B(H), g +— 7(ug)

is a unitary representation of G, thus there is an extension a: C% . (G) — B(H),
hence

C*(ug, g€ G|...) u B(H)

T A

Chax(G)

max

commutes and if ¢(z) = 0, then 7(z) = a0 ¢(z) = 0 and thus, as 7 is injective,
z =0. |

(iv) If ¢: G — B(H) is a unitary representation of the group G, then

*
Cmax

(G) — B(H), 95— ¢(9),

is a representation the full group-C* algebra. Conversely, if a representation
@: Cr..(G) — B(H) is given, then we get a representation of the group G via

¢: G — B(H), g+ $(dy)-

(v) Let A: G — B(£?(G)) be a left regular representation. Then A(g)d, = 0,y is
just left multiplication. Thus there is a faithful representation of CG via

M OG — BIA(G)), Y agy Y agA(g)

To see that X is faithful, let = = Yoaghy # 0, i.e., there is go such that oy, # 0.
Then

()3, g0) = (D gy, 8y ) = gy £ 0.

Because \ is faithful, we have CG = MCG) C B(£*(@)) and thus can define
Clea(G) = cl(MCG)) € B(*(G)).

(vi) By (iv), the left regular representation extends to A Crrax(G) = B(2(G)),
so in fact A: C, (G) — C%4 is a surjective *~homomorphism, \ is no isomorphism.
One can show there are surjective *-homomorphisms

C*

max

(G) — CIH.H(CG) — Creda
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identity on CG, hence: C}_  (G) is the maximal— and C};, is the minimal C*-
completion of CG. This map from C}, (G) to C}, exists for general locally
compact groups and we have that \is an isomorphism if and only if G is amenable.
G is called amenable, if there is a state m: L°°(G) — C such that m(fs) = m(f)
for all f € L>®°(G), s € G and f,(t) := f(s~t)." For example: If G is compact,
finite or abelian, then G is amenable.

(vil) L(G) = MNCG)" = C:4(G)" C B(f*(G)) is the group von Neumann
algebra for a group G.

(G) = Cy(@).

(ix) There also are right regular representations, but those yield the same C*-
algebras.

(x) We have a trace 7(x) = (xde, d.) on Cf4(G) by (Theorem 11.8).

(viii) If G is abelian and locally compact, then C

max

Example 19.13: Consider G = Z. Then
C*(Z) = C*(up,n € Z | uy, unitary, upty, = Untm, Uem = Un,),

hence ug = 1, u, = (ug)™ for n > 0 and u,, = (u ’{)'”‘ for n < 0. Thus we have the
equalities C*(Z) = C*(u; unitary) = C($!) = C(Z). Because Z is abelian, Z is
amenable, hence C},. (Z) = C}4(Z).

Example 19.14: Consider G = F5, the free group on two generators = and y. This
G is not amenable, thus C, (F2) # C¥ (F2). Also, we can write C . (F2) as
universal C* algebra: C}_ . (F3) = C*(u, v unitaries).

These group C*-algebras and the von Neumann algebras L(F,,) on n generators
are famous. Some properties of these are:

e C*(F,) and Cr4(F,) have faithful traces,

e C*(F,) and C}(F,) have no projections (a hot topic was to find such
examples until 19817).

o Cr ,(F,) is simple.

The problem for von Nemann algebras is the following: It is well known that
F,, 2F,,, if n #m. Furthermore it can be shown that for n # m, also CF,, 2 CF,,
and C},(F,) 2 C4(F,,). But for the group von Neumann algebras, it is still
unknown whether L(F,,) 2 L(F,,) or L(F,) = L(F,,). This problem is called the
free group factor problem and it has been open for more than 80 years now.

1This is only one of very many possible definitions for “amenable”.
2Kaplansky started the interest in this question in 1958, when he first asked for an example of a
simple C*-algebra without projections.
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20 Products of (*-algebras

Given two C*-algebras A, B. How can we form a “product” A 7) B?

Definition 20.1: Let A, B be unital C*-algebras and C be a C*-algebra, j;: C' < A,
ja: C'— B two embeddings.

(i) The C*-algebra
Axg B:=C"(a € B,b € B |relations of A, relations of B,14 = 1p)

is called the (unital) free product of A and B,
(ii) The C*-algebra

AxcB = C"(a € A,b € B | relations of A, relations of B, ji1(z) = ja(x) for all z € C'}
is called the amalgamated free product of A and B.

Proposition 20.2: The free product has the following universal property:

A

J1

C——=AxcB——=D

N

B
Example 20.3: We have
Cr o (Fo) =C(8Y) «C(8Y) = C*(Z) + C*(Z) = C*(Z + 7)

Remark 20.4: There are reduced free products.

Remark 20.5: Let A, B be C*-algebras. Then

A@B::span{ZaiQ@bi:aieA,bieB,nelN}/
i=1

(14 z)@y=210y+ 120,
r®R (1 +y2) =2 Qy1 + = R ya,
Mzoy) =)@y =2 (\y))

is the algebraic tensor product of A and B.
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Our concern shall now be to find a C*-norm on A ® B, of which there are in
fact many.

Definition 20.6: Let A, B be C*-algebras. For Y., a; ® b; € A©® B put

| S aen
i=1

then A ®max B := clj.),...(A ® B) is called the mazimal tensor product of A and
B;

:=sup{||7(z)|| | : A® B — B(H)*-homomorphism},

)
min

[0t
i=1
where m: A — B(H), o: B — B(K) are faithful representations and 7 ® o: A ©®
B — B(H ® K). Then A ®uin B = clj,...(A ® B) is called the minimal- or
spatial tensor product.

= || zn:w(ai) 2o (b))
i=1

Proposition 20.7: (i) We have a universal property:

AOB—K

|

A ®Il’laX B

(ii) For all C*-norms ||-||o on A ® B we have the diagram

A®maxB*>A®H.HW B—— AQuin B

| | |

A@BTAQBTA@B

Proposition 20.8: Let A, B be unital C*-algebras. Then
A @max B=C"(a € A, relations of A,b € B relations of B | ab="ba,14 = 1p).
Example 20.9: We have

C*(Z*) = C*(Z x Z) = C*(Z) @ C*(Z) = O(S") @ C($Y).

Remark 20.10: A C*-algebra A is called nuclear, if for all C*-algebras B it holds
A Qmin B=A Qmax B.

If A is commutative, then A is commutative (for example, 7, Ay and O,, are
nuclear).

G is amenable if and only if C*(G) is nuclear.
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20 Products of C*-algebras

Remark 20.11: Recall: For A, B C*-algebras,
AeB:={(a,b) [ac Abe B}, |(a,b)] :=max{||al, [|b]}
is called the direct sum of the C*-algebras A and B. We can express A ® B as

universal C*-algebra via

A@® B =C"(a € A, relations of A,b € B,relations of B | ab = 0).

Definition 20.12: Let G be a locally compact group, A a C*-algebra and let
a: G — Aut(A),g — a4 be a continuous group homomorphism (i.e., g — a4(z)
is continuous for all z € A). Then « is called an action of G on A, A is called a
G-C*-algebra, the triple (4, G, «) is called a covariant system or C*-dynamical
system.

Definition 20.13: A covariant representation of a C*-dynamical system (4, G, «)
is a non-degenerate representation 7: A — B(H) together with a unitary represen-
tation G — U(H), g — u, (on the same Hilbert space!) such that for all a € A,

g € G, it holds
m(ag(z)) = ugﬂ(x)ugl.

Remark 20.14: In the above situation, the unitaries (u4)gcq implement the auto-
morphisms (ag)geq, i. €., they make them inner.

Indeed, consider a C*-algebra A C B(H) and a unitary u € A. Then
A— A, U — uzu’”

is a *-homomorphism (z — u*zu is the inverse of z — wzu*). It is an inner
automorphism of A.

Remark 20.15: Let GG be discrete. Consider
fin
AG::{Zagég:ag EA}
geG

similar to the group algebra but with coefficients from A rather than from C, with
twisted multiplication

(5t1 * a6t2) = Oy (a)5t1t2, (5: = 5t*1

(Zatét) (stés) = Zatat(bs)(Sts.

How does this make (a¢)ieq inner? We have
( Z Clt(st) ( Z bsds) = Z &tétbséfétés = Z atat(bs)(ss.
t s s,t s,t

This construction works analogously for locally compact groups using L!(G) instead
of CG.

or rather
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Definition 20.16: Let G be discrete. Put

||| := sup{||7(z)|| | m: AG — B(H) non-degenerate
*-homomorphism induced from a covariant representation of (A, G,«)}

and call A xq G := clj.(AG) the cross-product of A with G (given o).

Remark 20.17: One can define left regular representations for C*-dynamical sys-
tems and one does obtain a reduced version A %, G.

Proposition 20.18: Let G be discrete, A be a unital C*-algebra and a: G — Aut(A)
be an action, i.e., let (A, G,a) be a C*-dynamical system. Then

A Xy G =C"(a€ A, relations of A, uy unitaries,g € G |
UgUp, = Ugh, Uy = Ug—1,0g(a) = ugaugfor all g,h € G, a € A, 14 = u.)
Remark 20.19: (i) A x, G contains a copy of A, a copy of G and it makes the

automorphism « inner. It is the smallest C*-algebra with this property. One can
also say that A is obtained by adjoining unitaries making the oy inner.

Example 20.20: (i) Let X be a locally compact space, G be a locally compact
group acting on X, i.e.,

a®: X xG— X, (z,g9) — gux.
Then (Cy(X), G, a) is a C*-dynamical system with

a: G — Aut(Co(X)),  ag(f)(x) = f(a®(z,9)) = f(g7)
for z € X, g € G. This classical understanding of a dynamical system matches the
notion of a C*-dynamical system.

(ii) If A= C, then a: G — Aut(G) acts trivially via ay(A) = A\. Then for the
cross-product A X, G it holds: A x, G = C %, G = C*(G).

More generally: If G acts trivially of some C*-algebra A (i.e., ay = id), then
A Xy G = ARmax C*(G). We then also have A X7, G = A Quin Cyq(G).

(iil) We have C*(N x, H) = C*(N) x4 H, where on the left side we mean the
semidirect product of groups and on the right side the cross-product of C*-algebras.

(iv) For G = Z, the action o: Z — Aut(A) consists in one single automorphism
ay, since a,, = a1 0 - -+ 0o a1 and every automorphism «: A — A induces an action

Z — Aut(A), Ur— qo---oaq.

Then
A Xy Z = C"(a € A,relations of A,u unitary | uau™ = a(a)).

If for instance A = C($') and
a: C($') — C(8') = C*(u unitary), u—s 2™y,

then C($') x1,, Z = Ay is the rotation algebra.
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