

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 1

submission: Monday, April 16 2018, 2 pm postbox of Andreas Widenka (basement of building E2.5)

Exercise 1 (20 + 5^{*} points). On $\ell^2 = \ell^2(\mathbb{N})$, fix the standard orthonormal basis $(e_n)_{n \in \mathbb{N}}$ and consider the associated unilateral shift $S \in B(\ell^2)$, which is determined by $Se_n = e_{n+1}$ for all $n \in \mathbb{N}$.

- (a) We define $f_{ij} := S^{i-1}(1-SS^*)(S^*)^{j-1}$ for all $i, j \in \mathbb{N}$. Prove the following statements:
 - (i) f_{ii} is a projection of rank 1,
 - (ii) $f_{ij}f_{kl} = \delta_{jk}f_{il}$,
 - (iii) $f_{ij}^* = f_{ji}$,
 - (iv) $f_{ij}e_n = \delta_{jn}e_i$.

In the following, we put $M_n := C^*(f_{ij} \mid 1 \le i, j \le n) \subseteq B(\ell^2).$

(b) Let E_{ij} denote the matrix where the ij-th entry is 1 and all other entries are 0. Show that the map

$$\psi: M_n(\mathbb{C}) \to M_n, \quad \sum_{i,j=1}^n \alpha_{ij} E_{ij} \mapsto \sum_{i,j=1}^n \alpha_{ij} f_{ij}$$

is a *-isomorphism.

Hint: Functional analysis I, Sheet 10, Exercise 3

(c) Let $T \in B(\ell^2)$ be an operator with the property that the image of both T and T^* is contained in span $\{e_1, \ldots, e_n\} \subset \ell^2$ for some $n \in \mathbb{N}$. Show that T can be written as $T = \sum_{i,j=1}^n \alpha_{ij} f_{ij}$ for some $\alpha_{ij} \in \mathbb{C}$. Show that an arbitrary finite rank operator $T \in B(\ell^2)$ can be approximated in

operator norm by a sequence $(T_n)_{n=1}^{\infty}$ of finite rank operators of the previous form.

please turn the page

(d) See Remark 9.9 in the lecture notes of *Functional analysis I* for the definition of the strong operator topology (SOT). We define

-alg(S) := {n.c. polynomials in S and S},

$$C^*(S) := \overline{*-\text{alg}(S)}^{\|\cdot\|},$$

$$W^*(S) := \overline{*-\text{alg}(S)}^{\text{SOT}}.$$

Show that $\mathcal{K}(\ell^2) \subseteq C^*(S) \subseteq W^*(S) = B(\ell^2).$

Hint: You may use Theorem 9.8 and Remark 9.9 in the lecture notes of *Functional analysis I* without proving them.

(e)* Are the inclusions $\mathcal{K}(\ell^2) \subseteq C^*(S)$ and $C^*(S) \subseteq W^*(S)$ proper?

Exercise 2 (20 points). Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbb{K} and denote by $\|\cdot\|$ the norm induced by $\langle \cdot, \cdot \rangle$. The *weak topology on* H is the locally convex topology on H that is generated by the family $\mathcal{P} = \{p_x \mid x \in H\}$ of seminorms

$$p_x: H \to [0,\infty), \quad y \mapsto |\langle y, x \rangle|.$$

For details on that terminology, we refer to Definitions 1.17 and 1.33 in the lecture notes of *Functional analysis I*.

- (a) Verify that the weak topology on H is Hausdorff.
- (b) Prove that every bounded sequence $(x_n)_{n=1}^{\infty}$ in H has a weakly convergent subsequence $(x_{n_k})_{k=1}^{\infty}$.

Hint: Assume first that H is separable. Construct a countable subset \mathcal{F} of H' which is dense in H' with respect to $\|\cdot\|_{H'}$. Use a diagonal argument to extract a subsequence $(x_{n_k})_{k=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ for which $(f(x_{n_k}))_{k=1}^{\infty}$ is convergent for all $f \in \mathcal{F}$. Deduce that $(f(x_{n_k}))_{k=1}^{\infty}$ is in fact convergent for all $f \in H'$. Use the reflexivity of H to find the weak limit of $(x_{n_k})_{k=1}^{\infty}$. Finally, reduce the general case to the previously discussed case of a separable Hilbert space.

(c) Prove that every bounded sequence $(x_n)_{n=1}^{\infty}$ in H has a weakly convergent subsequence $(x_{n_k})_{k=1}^{\infty}$ for which the sequence

$$\left(\frac{1}{K}\sum_{k=1}^{K}x_{n_k}\right)_{K=1}^{\infty}$$

is convergent in the norm topology.

Hint: Use (b) in order to reduce the problem to the case where $(x_n)_{n=1}^{\infty}$ is itself weakly convergent and has the weak limit 0. Construct iteratively a subsequence $(x_{n_k})_{k=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ such that

$$|\langle x_{n_{k+1}}, x_{n_l} \rangle| \le \frac{1}{k}$$
 for all $k \in \mathbb{N}$ and $l = 1, \dots, k$.

Finally, expand $\left\|\frac{1}{K}\sum_{k=1}^{K}x_{n_k}\right\|^2$ and use the properties of $(x_{n_k})_{k=1}^{\infty}$ in order to show that $\frac{1}{K}\sum_{k=1}^{K}x_{n_k}$ converges to 0 in norm as $K \to \infty$.