

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 2

submission: Monday, April 23 2018, before the lecture

Exercise 1 (20 points). Let A be a non-unital C*-algebra. A double centralizer of A is a pair (L, R) of linear maps from A to A satisfying L(ab) = L(a)b, R(ab) = aR(b) and aL(b) = R(a)b for all $a, b \in A$. The multiplier algebra M(A) of A is defined as follows:

 $M(A) := \{ (L, R) \text{ double centralizer of } A \}$

(a) Show that M(A) is a unital C^* -algebra and that the map

$$A \to M(A), \qquad a \mapsto (L_a, R_a)$$

is an isometric *-homomorphism. Furthermore prove that A is an ideal in M(A). Thus every non-unital C^* -algebra can be embedded as an ideal into a unital C^* algebra.

(b) Prove that M(A) is the largest unitization of A: If B is a unital C^* -algebra and $A \subseteq B$ as an ideal, then there is a *-homomorphism from B to M(A) that extends the embedding $A \subseteq M(A)$.

Exercise 2 (20 points). Let X be a locally compact metric space and let $A = C_0(X)$.

- (a) Show that A is a commutative C^* -algebra.
- (b) Prove that $C_0(\mathbb{R})$ is not unital.
- (c) The one-point compactification \hat{X} of X is given by the set $\hat{X} := X \cup \{\infty\}$ together with the following topology: A set $U \subseteq \hat{X}$ is a neighbourhood of $x \in X$ if and only if $U \cap X$ is a neighbourhood of x. A set $U \subseteq \hat{X}$ is a neighbourhood of ∞ if and only if U contains the complement of a compact set in X.

Prove $\tilde{A} = C(\hat{X}) = A \oplus \mathbb{C}1.$

- (d) We define $C_b(X) := \{f : X \to \mathbb{C} \text{ continuous, bounded}\}$. Show $M(A) = C_b(X)$.
- (e) Verify that $C(\hat{X})$ is a proper subset of $C_b(X)$.