

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 3

submission: Monday, April 30 2018, before the lecture

Exercise 1 (10 points). Let A be a C*-algebra, $a \in A$ normal and $f \in C(\text{Sp}(a))$ a continuous function on the spectrum of a. Prove that Sp(f(a)) = f(Sp(a)), where $f(\text{Sp}(a)) = \{f(\lambda) \mid \lambda \in \text{Sp}(a)\}$.

Exercise 2 (10 points). Let A be a unital Banach algebra and $x, y \in A$. Prove that

$$\operatorname{Sp}(xy) \cup \{0\} = \operatorname{Sp}(yx) \cup \{0\}.$$

Exercise 3 (10 points). (a) Let $f_n : \mathbb{R} \to \mathbb{R}$ be functions in $C_0(\mathbb{R})$, where $f_n(x) = 1$ for |x| < n. Show that the sequence $(f_n)_{n \in \mathbb{N}}$ is an approximate unit for $C_0(\mathbb{R})$.

(b) Let H be a separable Hilbert space of infinite dimension. Find a sequence of operators $(p_n)_{n \in \mathbb{N}}$ which is an approximate unit for the compact operators $\mathcal{K}(H)$.

Exercise 4 (10 points). Let A be a C^* -algebra and $x, h \in A$ selfadjoint with $h \ge 0$, $h \ge x$. The positive part x_+ of x is defined as $x_+ := f_+(x)$ via the functional calculus, where we have $f_+ : \mathbb{R} \to \mathbb{R}, f_+(t) := \begin{cases} t & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$.

- (a) Show that $h \ge x_+$ if A is commutative.
- (b) Verify that $h \geq x_+$ in general by giving a counterexample in the case $A = M_2(\mathbb{C})$.