UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK Dr. Tobias Mai Prof. Dr. Moritz Weber M.Sc. Simon Schmidt

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 4

submission: Monday, May 7 2018, before the lecture

Exercise 1 (10 points). Let tr be the normalized trace on $M_n(\mathbb{C})$, given by $\operatorname{tr}((a_{ij})) = \frac{1}{n} \sum_{i=1}^{n} a_{ii}$, where we know $\operatorname{tr}(xy) = \operatorname{tr}(yx)$. Let $h \in M_n(\mathbb{C})$ be positive and $f_h : M_n(\mathbb{C}) \to \mathbb{C}$ be the map defined by $f_h(x) := \operatorname{tr}(hx)$. Show that the map $h \mapsto f_h$ is an orderpreserving bijection between the positive elements of $M_n(\mathbb{C})$ and the positive functionals on $M_n(\mathbb{C})$, with $||f_h|| = \operatorname{tr}(h)$.

Exercise 2 (10 points). Let f be a state on a C^{*}-algebra A and (π_f, H_f) its GNS representation.

- (a) Let $I \triangleleft A$ be an ideal in A. Prove that $I \subseteq \ker(\pi_f)$ if and only if $I \subseteq \ker(f)$.
- (b) The state f is called *faithful*, if f(a) = 0 implies a = 0 for all positive elements $a \in A$. Show that ker $(\pi_f) = 0$ if f is faithful.
- (c) Let $(u_{\lambda})_{\lambda \in \Lambda}$ be an approximate unit for A. Verify that $(\pi_f(u_{\lambda}))_{\lambda \in \Lambda}$ converges to 1 in the strong operator topology on $B(H_f)$, i.e. $\pi_f(u_{\lambda})\xi \to \xi$ for all $\xi \in H_f$.

Exercise 3 (10 points). Let (π_i, H_i, ξ_i) , i = 1, 2 be cyclic representations of a C^* -algebra A and $f_i : A \to \mathbb{C}$, i = 1, 2 positive functionals with $f_i(x) = \langle \pi_i(x)\xi_i, \xi_i \rangle$. Prove that if $f_1 = f_2$, then there exists a unitary $U : H_1 \to H_2$ with $\pi_2(x) = U\pi_1(x)U^*$ and $U\xi_1 = \xi_2$.

Exercise 4 (10 points). Let $e, f \in B(H)$ be projections. Show that the following are equivalent:

- (i) ef = e
- (ii) fe = e
- (iii) $eH \subseteq fH$
- (iv) f e is a projection
- (v) f e is positive

If one (and hence all) of these conditions is satisfied, we write $e \leq f$.