

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 5

submission: Monday, May 14 2018, before the lecture

Exercise 1 (10 points). Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space.

- (a) Work out the details of Remark 1.2, i.e., show that $\tau_{WOT} \subseteq \tau_{SOT} \subseteq \tau_{ONT}$.
- (b) Prove that $x \mapsto x^*$ is continuous with respect to ONT and WOT.
- (c) Prove Remark 1.3 (iii), i.e., show that for fixed $y \in B(H)$ the linear mappings $x \mapsto xy$ and $x \mapsto yx$ are both continuous with respect to SOT and WOT.
- (d) Show that if A is a *-subalgebra of B(H), then so is \overline{A}^{WOT} .

Exercise 2 (10 points). Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space.

(a) Consider a strongly continuous linear functional $\varphi : B(H) \to \mathbb{C}$. Show that there are $n \in \mathbb{N}$, vectors $\xi_1, \ldots, \xi_n \in H$, and some C > 0 such that

$$|\varphi(x)| \le C \left(\sum_{i=1}^n \|x\xi_i\|^2\right)^{1/2} \quad \text{for all } x \in B(H).$$

- (b) Prove Lemma 6.2 of the lecture: Let $\varphi : B(H) \to \mathbb{C}$ be a linear functional. Then the following statements are equivalent:
 - (i) φ is continuous with respect to the weak operator topology.
 - (ii) φ is continuous with respect to the strong operator topology.
 - (iii) There are $n \in \mathbb{N}$ and vectors $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n \in H$, such that

$$\varphi(x) = \sum_{i=1}^{n} \langle x\xi_i, \eta_i \rangle$$
 for all $x \in B(H)$.

Hint: Prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i). For proving (ii) \Rightarrow (iii), use (a) and consider the Hilbert subspace $K \subseteq H^n$ that is given as the closure of $K_0 := \{(x\xi_1, \ldots, x\xi_n) \mid x \in B(H)\}$; show that the assignment $(x\xi_1, \ldots, x\xi_n) \mapsto \varphi(x)$ is well-defined on K_0 and extends to a continuous linear functional $\psi : K \to \mathbb{C}$; finally apply the Riesz representation theorem to ψ .

please turn the page

Exercise 3 (10 points). Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and let $S \subseteq B(H)$ be any subset. Prove the following assertions, which were made in Lemma 6.7 of the lecture:

- (a) The commutant S' of S is a weakly (and thus also strongly) closed unital subalgebra of B(H).
- (b) If S satisfies $S^* = S$ (i.e., $x \in S \Rightarrow x^* \in S$), then S' is a weakly (and thus also strongly) closed unital *-subalgebra of B(H).
- (c) We have $S \subseteq S''$ and S''' = S'. If $T \subseteq B(H)$ is another subset, then

$$S \subseteq T \implies T' \subseteq S'.$$

Exercise 4 (10 points). Let $(H, \langle \cdot, \cdot \rangle)$ be a separable complex Hilbert space.

(a) Let $(\xi_i)_{i \in I}$ and $(\eta_j)_{j \in J}$ two orthonormal bases of H. Show that for all $x \in B(H)$

$$\sum_{i \in I} \|x\xi_i\|^2 = \sum_{j \in J} \|x\eta_j\|^2$$

(b) We set for $x \in B(H)$

$$||x||_2 := \left(\sum_{i \in I} ||x\xi_i||^2\right)^{1/2} \in [0, \infty],$$

where $(\xi)_{i \in I}$ is any orthonormal basis of H; we call x a *Hilbert-Schmidt operator* if $||x||_2 < \infty$. We denote by $L^2(B(H))$ the set of all Hilbert-Schmidt operators $x \in B(H)$. Prove the following statements for arbitrary $x, y \in B(H)$ and $\lambda \in \mathbb{C}$:

- (i) $||x + y||_2 \le ||x||_2 + ||y||_2$ and $||\lambda x||_2 = |\lambda| ||x||_2$
- (ii) $||x|| \le ||x||_2$
- (iii) $||x^*||_2 = ||x||_2$
- (iv) $||xy||_2 \le ||x|| ||y||_2$ and $||xy||_2 \le ||x||_2 ||y||$

Thus, $L^2(B(H))$ is a selfadjoint ideal in B(H) and a normed *-algebra.