

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 6 submission: Wednesday, May 23 2018 (!), before the lecture

Exercise 1 (10 points).

(a) Let $(x)_{\lambda \in \Lambda}$ and $(y_{\lambda})_{\lambda \in \Lambda}$ be two nets in B(H) over the same directed set Λ which are strongly convergent to x and y, respectively, in B(H). Suppose, moreover, that $(x_{\lambda})_{\lambda \in \Lambda}$ is bounded. Prove that $(x_{\lambda}y_{\lambda})_{\lambda \in \Lambda}$ is strongly convergent to xy.

Deduce that, if $h_1, h_2 \in C(\mathbb{R})$ are both SOT continuous and at least one of them is additionally bounded, then also $h_1 \cdot h_2$ is SOT continuous.

(This argument was used in the proof of Theorem 7.2.)

(b) Put $B(H)_1 := \{x \in B(H) \mid ||x|| \le 1\}$. Show that, if $(x_\lambda)_{\lambda \in \Lambda}$ is any net in $B(H)_1$ which converges strongly to some $x \in B(H)$, then necessarily $x \in B(H)_1$.

(Note that this proves the inclusions " \subseteq " in the Kaplansky density theorem, Theorem 7.3.)

Exercise 2 (10 points). Prove Corollary 7.5 of the lecture:

Let $A \subseteq B(H)$ be a *-subalgebra. Then, for each $x \in B := \overline{A}^{SOT}$, we find a net $(x_{\lambda})_{\lambda \in \Lambda}$ in A such that

$$x_{\lambda} \xrightarrow{\text{SOT}} x$$
 and $\sup_{\lambda \in \Lambda} \|x_{\lambda}\| \le \|x\|.$

If x is selfadjoint, then $(x_{\lambda})_{\lambda \in \Lambda}$ can be chosen to consist of selfadjoint operators x_{λ} in A.

If the underlying Hilbert space $(H, \langle \cdot, \cdot \rangle)$ is separable, then there exists even a sequence $(x_n)_{n=1}^{\infty}$ in A with the above properties.

Hint: For proving the existence of the sequence $(x_n)_{n=1}^{\infty}$, take any sequence $(\xi_k)_{k=1}^{\infty}$ of vectors in H for which $\{\xi_n \mid n \in \mathbb{N}\}$ is dense in H and find $x_n \in A$ for each $n \in \mathbb{N}$ such that $||x_n|| \leq ||x||$ and $||x_n\xi_k - x\xi_k|| < \frac{1}{n}$ holds for $k = 1, \ldots, n$. Deduce that $(x_n)_{n=1}^{\infty}$ converges strongly to x.

please turn the page

Exercise 3 (5 points). Prove Lemma 8.9 of the lecture:

An abelian von Neumann algebra $M \subseteq B(H)$ is maximal if and only if M' = M.

Exercise 4 (15 points). Let K be a compact Hausdorff space and let μ be a finite Borel measure on K. For each $f \in L^{\infty}(K, \mu)$, we define on the Hilbert space $L^{2}(K, \mu)$ a multiplication operator $M_{f} \in B(L^{2}(K, \mu))$ by $M_{f}g := fg$ for all $g \in L^{2}(K, \mu)$. We denote by $A := \{M_{f} \mid f \in C(K)\}$ the C^{*} -algebra of multiplication operators induced by continuous functions. Prove the following statements:

- (a) We have $M := A' = \{M_f \mid f \in L^{\infty}(K, \mu)\}$ and M is a von Neumann algebra.
- (b) We have M' = M, i.e., M is maximal abelian.
- (c) The constant function 1 (given by $\mathbf{1}(t) = 1$ for all $t \in K$) is cyclic and separating.