

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 7

submission: Monday, May 28 2018, before the lecture

Let M be a von Neumann algebra , $e \in M$ a projection. We say that

- (i) $e \neq 0$ is minimal, if for every projection $f \in M$ with $f \leq e$ we have f = 0 or f = e.
- (ii) e is finite if $e \sim f \leq e$ implies e = f.

Exercise 1 (10 points). Consider the von Neumann algebra M = B(H), where H is a separable Hilbert space and let $e, f \in B(H)$ be projections. Show that

- (a) $e \sim f$ if and only if dim $eH = \dim fH$.
- (b) $e \preceq f$ if and only if dim $eH \leq \dim fH$.
- (c) e is minimal if and only if e is a projection of rank 1.
- (d) e is finite if and only if eH is finite dimensional.

Exercise 2 (10 points). Let M be a von Neumann algebra such that 1 is a finite projection. Prove the following statements:

- (a) Every projection $e \in M$ is finite.
- (b) If $e \sim f$ then $1 e \sim 1 f$ for projections $e, f \in M$.
- (c) If $e \sim f$ then there exists a unitary $u \in M$ such that $f = ueu^*$.
- (d) The statements (b) and (c) are false if M is a von Neumann algebra, where 1 is not finite.

 ${\bf Hint: \ Consider \ the \ unilateral \ Shift.}$