

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 8

submission: Monday, June 4 2018, before the lecture

Exercise 1 (10 points). Let $M \subseteq B(H)$ be a factor and let $e, f \in M$ be projections. Show:

- (a) If e and f are minimal, then $e \sim f$.
- (b) If f is finite and $e \preceq f$, then e is also finite.
- (c) It holds ef = 0 if and only if $eH \perp fH$. In this case, e + f is a projection.

Exercise 2 (10 points). Let $M \subseteq B(H)$ be a factor and let $e, f \in M$ be projections. Prove that there exist a family $(e_i)_{i \in I}$ of mutually orthogonal projections in M with $e_i \sim e$ for all $i \in I$ and a projection $r \in M$ with $r \preceq e$ and $r \nsim e$ such that

$$f = r + \sum_{i \in I} e_i.$$

Hint: Use Zorn's lemma.

Exercise 3 (10+10+10^{*} points). Let $M \in B(H)$ be a von Neumann algebra and let $p \in M$ be a non-zero projection. Prove the following statements:

- (a) We have pMp = (M'p)' and (pMp)' = M'p as algebras of operators on the Hilbert space pH = im(p). Thus pMp and M'p are both von Neumann algebras on pH.
 Hint: First show that (pM')' = pMp holds. Conclude by proving that any unitary u ∈ (pMp)' can be extended to an isometry ũ : K → K on the Hilbert space K := MpH ⊆ H, such that ũq ∈ M' holds for q being the orthogonal projection from H to K. For this purpose, check q ∈ Z(M).
- (b) If M is a factor, then pMp and pM' are both factors on pH. Moreover, the map

$$\Phi: M' \to M'p, \quad x \mapsto xp$$

is a weakly continuous *-algebra isomorphism.

Hint: Use the general fact (which was proven in (a)) that the orthogonoal projection q from H onto $K = \overline{MpH}$ belongs to Z(M).

(c^{*}) If M is a factor of type I, II or III, then pMp is a factor of the same type.