

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 11

submission: Monday, June 25 2018, before the lecture

Exercise 1 (10 points). Let M be a factor of type II₁ and let $\tau : M \to \mathbb{C}$ be its unique faithful normal tracial state. Show that

$$\tau(\mathcal{P}(M)) = [0,1].$$

Hint: Fix any $t \in [0,1]$ and consider the set $S_t := \{p \in \mathcal{P}(M) \mid \tau(p) \leq t\}$. Verify that S_t is partially ordered and use Zorn's lemma to prove that S_t contains a maximal element p; finally, show that $\tau(p) = t$.

Exercise 2 (10 points). Let $M \subseteq B(H)$ be a type II₁ factor with its unique faithful normal tracial state $\tau : M \to \mathbb{C}$. Suppose that M possesses a cyclic and separating vector Ω in H such that $\tau(x) = \langle x\Omega, \Omega \rangle$ for all $x \in M$. Denote by M' the commutant of M in B(H) and let $J : M\Omega \to M\Omega$ be defined by $J(x\Omega) = x^*\Omega$ for all $x \in M$. Prove the following statements:

- (a) The antilinear operator $J: M\Omega \to M\Omega$ extends uniquely to an antilinear isometry $J: H \to H$ that satisfies $J^2 = 1$ and $\langle J\xi, \eta \rangle = \langle J\eta, \xi \rangle$ for all $\xi, \eta \in H$; we call J the canonical conjugation operator on H.
- (b) For all $x, y \in M$, it holds true that $JxJ(y\Omega) = yx^*\Omega$.
- (c) For every $x \in M'$, we have that $Jx\Omega = x^*\Omega$.

Deduce that JMJ = M' and show that also M' is a type II₁ factor. How does the unique faithful tracial state on M' look like?

Hint: For proving JMJ = M', switch the roles of M and M'. What does (c) tell us about this case?

Exercise 3 (10 points). Let G be a non-trivial countable discrete i.c.c. group. Consider the left group von Neumann algebra M = L(G), which is a factor of type II₁, with its unique faithful normal tracial state τ .

- (a) Show that $L^2(M,\tau)$ and $\ell^2(G)$ are isomorphic as (left) *M*-modules.
- (b) Conclude that also the right group von Neumann algebra R(G) is a type II₁ factor.

please turn the page

Exercise 4 (10 points). Let M be a separable factor of type II₁ and let $(H_i)_{i \in I}$ be a countable family of separable M-modules. Prove that

$$\dim_M \left(\bigoplus_{i \in I} H_i \right) = \sum_{i \in I} \dim_M H_i.$$

Hint: Show that $\bigoplus_{i \in I} (L^2(M, \tau) \otimes \ell^2(\mathbb{N}))$ and $L^2(M, \tau) \otimes \ell^2(\mathbb{N})$ are equivalent *M*-modules, where τ denotes the unique faithful normal tracial state on *M*.

Exercise 5 (10^{*} points). Consider the group $U_n(\mathbb{C})$ of unitary matrices in $M_n(\mathbb{C})$. If $U_n(\mathbb{C})$ is endowed with the topology induced by the restriction of the operator norm on $M_N(\mathbb{C}) = B(\mathbb{C}^n)$, it forms a compact group. Let μ be a Radon probability measure defined on the Borel sets of $U_n(\mathbb{C})$ which is *(left) invariant* in the sense that $\mu(u\Omega) = \mu(\Omega)$ holds for all Borel subsets $\Omega \subseteq U_n(\mathbb{C})$ and all $u \in U_n(\mathbb{C})$. (Note that such a measure exists and is in fact unique; it is called the *(left) Haar measure of* $U_n(\mathbb{C})$.) Show that for all $x \in M_n(\mathbb{C})$

$$\operatorname{tr}_n(x)1 = \int_{U_n(\mathbb{C})} uxu^* \, d\mu(u).$$

Hint: Put $y := \int_{U_n(\mathbb{C})} uxu^* d\mu(u) \in M_n(\mathbb{C})$. Show that $y \in Z(M_n(\mathbb{C}))$ by proving that $y \in U_n(\mathbb{C})'$. Finally, use these observations to compute $\operatorname{tr}_n(y)$.