UNIVERSITÄT DES SAARLANDES FACHRICHTUNG MATHEMATIK

Dr. Tobias Mai

Prof. Dr. Moritz Weber M.Sc. Simon Schmidt

Exercises for the lecture Operator algebras (Functional analysis II) Summer term 2018

Sheet 13

submission: Monday, July 9 2018, before the lecture

Exercise 1 (20 points). Let $\vartheta = \frac{p}{q} \in \mathbb{Q}$.

- (a) Find a representation $\pi: A_{\vartheta} \to M_q(\mathbb{C})$.
- (b) Prove that there exist unital *-homomorphisms $\varphi: A_{\vartheta} \to B$ and $\psi: A_{\vartheta} \to D$ such that $\varphi(v^q) = 1$ and $\psi(v^q) \neq 1$.
- (c) Deduce that A_{ϑ} is not simple.
- (d) Show that u^q and v^q commute with every element in A_{ϑ} , where u, v denote the generators of A_{ϑ} . Thus, there is a *-homomorphism $C(\mathbb{T}^2) \to C^*(u^q, v^q) \subseteq A_{\vartheta}$ (in fact, this is an isomorphism).

Exercise 2 (20 points). Consider $\mathcal{O}_n := C^*(S_1, \ldots, S_n \mid S_i^* S_i = 1, \sum_{i=1}^n S_i S_i^* = 1)$, the Cuntz algebra for $2 \leq n \in \mathbb{N}$. A word in \mathcal{O}_n is an element $S_{\mu} = S_{i_1} \ldots S_{i_k}$, where $\mu = (i_1, \ldots, i_k) \in \{1, \ldots, n\}^k$. Here $|\mu| := k$ denotes the length of the word S_{μ} and μ is called multi-index.

- (a) Prove the following statements.
 - (i) If $|\mu| = |\nu|$, then $S_{\mu}^* S_{\nu} = \delta_{\mu\nu} 1$.

(ii) If
$$|\mu| < |\nu|$$
, then $S_{\mu}^* S_{\nu} = \begin{cases} S_{\nu'} & \text{if } \nu = \mu \nu' \\ 0 & \text{else.} \end{cases}$

(iii) If
$$|\mu| > |\nu|$$
, then $S_{\mu}^* S_{\nu} = \begin{cases} S_{\mu'}^* & \text{if } \mu = \nu \mu' \\ 0 & \text{else.} \end{cases}$

- (b) Let $k \in \mathbb{N}$. Show that $\sum_{\delta \text{ multi-index}, |\delta|=k} S_{\delta} S_{\delta}^* = 1$.
- (c) Let μ, ν be such that $|\mu| \neq |\nu|$ and $|\mu|, |\nu| \leq k$. Verify $S_{\gamma}^*(S_{\mu}S_{\nu}^*)S_{\gamma} = 0$ for $S_{\gamma} = S_1^k S_2$.
- (d) Let $k \in \mathbb{N}$. Show:
 - (i) $w := \sum_{|\delta|=k} S_{\delta} S_{\gamma} S_{\delta}^* \in \mathcal{O}_n$ is an isometry, with $S_{\gamma} := S_1^{2k} S_2$.
 - (ii) wx = xw for all $x \in \text{span}\{S_{\mu}S_{\nu}^* | |\mu| = |\nu| = k\}.$

(iii)
$$w^* S_{\mu} S_{\nu}^* w = \begin{cases} S_{\mu} S_{\nu}^* & \text{if } |\mu| = |\nu| \\ 0 & \text{else} \end{cases}$$
 for all $|\mu|, |\nu| \le k$.