## UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Moritz Weber



## Übungen zur Vorlesung Operatoralgebren

Wintersemester 2015/2016

## Blatt 3

**Abgabe:** Montag, 16.11.2015, 12:30 Uhr in der Vorlesung oder bei Daniel Kraemer (Zimmer 415)

**Aufgabe 1.** Sei A eine unitale  $C^*$ -Algebra. Zeige folgende Aussagen über das Spektrum  $\operatorname{sp}(x)$  für bestimmte Elemente  $x \in A$ . (Vgl. Bemerkung 3.13)

- (a) Ist  $x \in A$  invertierbar, so ist  $\operatorname{sp}(x^{-1}) = \{\lambda^{-1} \mid \lambda \in \operatorname{sp} x\}$ . (Dies gilt übrigens schon, wenn A bloß eine Algebra ist.)
- (b) Ist  $u \in A$  unitär (dh.  $u^*u = uu^* = 1$ ), so ist  $\operatorname{sp}(u) \subset S^1 \subset \mathbb{C}$ , wobei  $S^1$  der Einheitskreis auf  $\mathbb{C}$  ist. Zeige dafür, dass  $||u|| = ||u^*|| = 1$  und benutze (a).
- (c) Ist  $x \in A$  selbstadjungiert (und A nicht notwendig unital), so ist  $\operatorname{sp}(x) \subset \mathbb{R}$ . Zeige dafür, dass jeder Spektralwert  $\lambda$  aus  $\operatorname{sp}(x)$  einen Spektralwert des unitären Lifts  $u := e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$  induziert. Dafür ist das Element  $z := \sum_{n=1}^{\infty} \frac{i^n(\lambda - x)^{n-1}}{n!}$  hilfreich. Benutze schließlich (b).
- **Aufgabe 2.** (a) Zeige, dass die  $C^*$ -Algebra  $M_n(\mathbb{C})$  der komplexwertigen  $n \times n$ -Matrizen einfach ist: Ist I ein abgeschlossenes (zweiseitiges) Ideal in  $M_n(\mathbb{C})$ , so ist  $I = \{0\}$  oder  $I = M_n(\mathbb{C})$ .
  - (b) Seien A und B beliebige  $C^*$ -Algebren und  $\varphi:A\to B$  ein \*-Homomorphismus. Zeige, dass  $\ker\varphi$  ein Ideal in A ist.
  - (c) Zeige, dass es keine \*-Homomorphismen von  $M_n(\mathbb{C})$  nach  $\mathbb{C}$  gibt, wenn  $n \geq 2$ . Insofern ist  $\operatorname{Spec}(M_n(\mathbb{C})) = \emptyset$ . Die Gelfandtransformation ist in diesem Fall also nur mäßig spannend und Satz 2.8 hat kein Analogon.

**Aufgabe 3.** Sei A eine  $C^*$ -Algebra und sei  $a \in A$  normal. Sei  $f \in C(\operatorname{sp}(a))$  eine stetige Funktion auf dem Spektrum von a. Zeige, dass dann  $\operatorname{sp}(f(a)) = f(\operatorname{sp}(a))$  gilt, wobei  $f(\operatorname{sp}(a)) = \{f(\lambda) \mid \lambda \in \operatorname{sp}(a)\}.$