## UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Moritz Weber



## Übungen zur Vorlesung Operatoralgebren

Wintersemester 2015/2016

## Blatt 5

**Abgabe:** Montag, 30.11.2015, 12:30 Uhr

**Aufgabe 1.** Sei tr die normalisierte Spur auf  $M_n(\mathbb{C})$ , gegeben durch  $\operatorname{tr}((a_{ij})) = \frac{1}{n} \sum_{i=1}^n a_{ii}$ . Es ist bekannt, dass  $\operatorname{tr}(xy) = \operatorname{tr}(yx)$  gilt. Sei  $h \in M_n(\mathbb{C})$  ein positives Element und  $f_h : M_n(\mathbb{C}) \to \mathbb{C}$  durch  $f_h(x) := \operatorname{tr}(hx)$  definiert. Zeige, dass die Abbildung  $h \mapsto f_h$  eine ordnungserhaltende Bijektion zwischen der Menge der positiven Elemente von  $M_n(\mathbb{C})$  und der Menge der positiven Funktionale von  $M_n(\mathbb{C})$  definiert, mit  $||f_h|| = \operatorname{tr}(h)$ .

**Aufgabe 2.** Sei f ein Zustand auf einer  $C^*$ -Algebra A und  $(\pi_f, H_f)$  die zugehörige GNS-Darstellung.

- (a) Sei  $I \triangleleft A$  ein Ideal in A. Zeige:  $I \subset \ker(\pi_f) \iff I \subset \ker(f)$
- (b) f heißt treu, falls  $f(a) = 0 \Longrightarrow a = 0$  für jedes positive  $a \in A$ . Zeige, dass  $kern(\pi_f) = 0$ , falls f treu ist.
- (c) Sei  $(u_{\lambda})_{{\lambda}\in{\Lambda}}$  eine approximierende Eins in A. Zeige, dass  $(\pi_f(u_{\lambda}))_{{\lambda}\in{\Lambda}}$  in  $\mathcal{L}(H_f)$  in der starken Operatortopologie gegen 1 konvergiert (dass also  $\pi_f(u_{\lambda})\xi \to \xi$  gilt, für alle  $\xi \in H_f$ ).

**Aufgabe 3.** Beweise Lemma 6.13: Seien  $(\pi_i, H_i, \xi_i)$ , i = 1, 2 zwei zyklische Darstellungen einer  $C^*$ -Algebra A, seien  $f_i : A \to \mathbb{C}$ , i = 1, 2 zwei positive Funktionale mit  $f_i(x) = \langle \pi_i(x)\xi_i, \xi_i \rangle$ . Gilt nun  $f_1 = f_2$ , so gibt es ein Unitäres  $U : H_1 \to H_2$  mit  $\pi_2(x) = U\pi_1(x)U^*$  und  $U\xi_1 = \xi_2$ . (Tipp: Zeige zunächst, dass  $\pi_1(x)\xi_1 \mapsto \pi_2(x)\xi_2$  isometrisch ist.)

**Zusatzaufgabe\*.** Ein Zustand f auf einer  $C^*$ -Algebra heißt rein, falls es für jedes positive lineare Funktional g mit  $0 \le g \le f$  eine Zahl  $\lambda \in [0,1]$  gibt, so dass  $g = \lambda f$  ist.

Zeige, dass die reinen Zustände auf  $M_n(\mathbb{C})$  genau die  $f_h$  sind, bei denen h ein Vielfaches einer Rang-1-Projektion (dh. das Bild der Projektion h ist eindimensional) ist.

Wie sieht eigentlich die zu tr assoziierte GNS-Darstellung von  $M_n(\mathbb{C})$  aus? Und wie jene zu einem reinen Zustand assoziierte?

[In einem Krein-Milman-Sinne sind die reinen Zustände die Extremalpunkte aller Zustände. Man kann daher zeigen, dass im Allgemeinen die GNS-Darstellung zu einem reinen Zustand  $f: A \to \mathbb{C}$  irreduzibel ist, dh. die einzigen abgeschlossenen Unterräume von  $H_f$ , die unter  $\pi_f(A)$  invariant sind, sind 0 und  $H_f$ . Insofern ergeben reine Zustände also besonders "platzsparende" Darstellungen.]