UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Moritz Weber

Übungen zur Vorlesung Operatoralgebren

Wintersemester 2015/2016

Blatt 9

Abgabe: Montag, 25.1.2016, 12:00 Uhr

Aufgabe 1. $M_n(\mathbb{C})$ und \mathcal{K} als universelle C^* -Algebra (Beispiele 12.6 und 12.8).

- (a) Zeige, dass die universellen C^* -Algebren aus Beispiel 12.6(ii) und (iii) sowie aus Beispiel 12.8(ii) und (iii) existieren (dass also die Halbnorm aus der Konstruktion 12.1 für alle Elemente beschränkt ist). Zeige dafür u.a., dass x_1 eine Projektion ist.
- (b) Finde zwei *-Homomorphismen

 $\varphi: C^*(e_{ij}, i, j = 1, \dots, n \mid e_{ij}^* = e_{ji}, e_{ij}e_{kl} = \delta_{jk}e_{il}) \to C^*(x_1, \dots, x_n \mid x_i^*x_j = \delta_{ij}x_1)$ $\psi: C^*(x_1, \dots, x_n \mid x_i^*x_j = \delta_{ij}x_1) \to C^*(e_{ij}, i, j = 1, \dots, n \mid e_{ij}^* = e_{ji}, e_{ij}e_{kl} = \delta_{jk}e_{il})$ so dass $\varphi \circ \psi = \mathrm{id}_{C^*(x_1, \dots, x_n \mid \dots)}$ und $\psi \circ \varphi = \mathrm{id}_{C^*(e_{ij}, i, j = 1, \dots, n \mid \dots)}$. Folgere, dass die beiden universellen C^* -Algebren jeweils isomorph zu $M_n(\mathbb{C})$ sind.

(c) Übertrage (b) auch auf den Fall \mathcal{K} , also auf Beispiel 12.8.

Aufgabe 2. Betrachte die folgenden universellen C^* -Algebren.

- (a) Finde eine natürliche Zahl $n \in \mathbb{N}$, so dass $C^*(p, 1 \mid p)$ ist eine Projektion) $\cong \mathbb{C}^n$ und beweise den Isomorphismus. (Hierbei ist 1 die Eins der C^* -Algebra auf der linken Seite, dh. die Relationen 1p = p1 = p gelten ebenfalls.)
- (b) Finde eine natürliche Zahl $m \in \mathbb{N}$, so dass $C^*(s, 1 \mid s)$ ist eine Symmetrie) $\cong \mathbb{C}^m$ und beweise den Isomorphismus. Eine Symmetrie ist ein selbstadjungiertes Unitäres.
- (c) Finde einen expliziten Isomorphismus zwischen $C^*(p, 1 \mid p)$ ist eine Projektion) und $C^*(s, 1 \mid s)$ ist eine Symmetrie) für den Fall, dass m = n. Bearbeite (a) und (b) erneut, falls $m \neq n$.

Aufgabe 3. Sei H ein unendlichdimensionaler, separabler Hilbertraum. Zeige, dass jedes Ideal I in $\mathcal{L}(H)$ die kompakten Operatoren $\mathcal{K}(H)$ enthält. Zeige zunächst, dass alle Rang-1-Operatoren (Operatoren mit eindimensionalem Bild) in I liegen. Folgere, dass $\mathcal{K}(H)$ einfach ist.

Hierbei darf benutzt werden, dass die Menge F(H) der Operatoren endlichen Rangs (dh. das Bild jeden Operators in F(H) ist endlichdimensional) dicht ist in $\mathcal{K}(H)$. Man kann übrigens sogar zeigen, dass $\mathcal{K}(H)$ das einzige Ideal in $\mathcal{L}(H)$ ist.