UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai

Assignments for the lecture on von Neumann algebras, subfactors, and planar algebras Summer term 2016

Assignment 1

for the tutorial on *Tuesday*, May 10 (in SR 6)

Exercise 1.

- (a) Let φ be a linear functional on some $B(\mathcal{H})$. Prove that the following statements are equivalent:
 - (i) There are $n \in \mathbb{N}$ and vectors $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n \in \mathcal{H}$, such that

$$\varphi(x) = \sum_{k=1}^{n} \langle x\xi_k, \eta_k \rangle$$
 for all $x \in B(\mathcal{H})$.

- (ii) φ is continuous with respect to the weak operator topology.
- (iii) φ is continuous with respect to the strong operator topology.

Show that the equivalence of (ii) and (iii) still holds for a linear functional φ defined on any von Neumann algebra $M \subset B(\mathcal{H})$.

In fact, for any linear functional φ on a von Neumann algebra $M \subset B(\mathcal{H})$, the following statements are equivalent (see Blackadar, Theorem III.2.1.4):

- (i) There are sequences $(\xi_k)_{k\in\mathbb{N}}$, $(\eta_k)_{k\in\mathbb{N}}$ in \mathcal{H} with $\sum_{k=1}^{\infty} \|\xi_k\|^2 < \infty$ and $\sum_{k=1}^{\infty} \|\eta_k\|^2 < \infty$, such that $\varphi(x) = \sum_{k=1}^{\infty} \langle x\xi_k, \eta_k \rangle$ for all $x \in M$.
- (ii) φ , restricted to the unit ball of M, is continuous with respect to the weak operator topology.
- (iii) φ , restricted to the unit ball of M, is continuous with respect to the strong operator topology.
- (iv) φ is normal.

If φ is a state, these are also equivalent to

- (v) There is an orthogonal sequence $(\xi_k)_{k\in\mathbb{N}}$ of vectors in \mathcal{H} with $\sum_{k=1}^{\infty} ||\xi_k||^2 = 1$, such that $\varphi(x) = \sum_{k=1}^{\infty} \langle x\xi_k, \xi_k \rangle$ for all $x \in M$.
- (vi) φ is completely additive, i.e., whenever $(p_i)_{i \in I}$ is a family of mutually orthogonal projections in M, then $\varphi(\sum_{i \in I} p_i) = \sum_{i \in I} \varphi(p_i)$.
- (b) Let M be a finite factor and let τ be the unique norm-continuous trace on M (see Theorem 1.11). As usually, we denote by $L^2(M) = L^2(M, \tau)$ the complex Hilbert space obtained by completion of M with respect to the inner product $\langle \cdot, \cdot \rangle$ induced by τ , i.e. $\langle x, y \rangle := \tau(xy^*)$ for all $x, y \in M$. The corresponding norm on $L^2(M)$ will be denoted by $\|\cdot\|_2$.

please turn the page

Consider now the unit ball $B := \{x \in M | ||x|| \le 1\}$ with respect to the operator norm $|| \cdot ||$ on M. Show that B, endowed with the metric induced by $|| \cdot ||_2$, is a complete metric space and that the topology on B induced by $|| \cdot ||_2$ is the same as the strong operator topology.

Exercise 2. Let $M \subset B(\mathcal{H})$ be a type II₁-factor with trace τ , acting on some Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ where M possesses a cyclic and separating vector Ω such that $\tau(x) = \langle x\Omega, \Omega \rangle$ for all $x \in M$. Denote by M' the commutant of M and let $J : \mathcal{H} \to \mathcal{H}$ be the *antilinear unitary* involution determined by $J(x\Omega) = x^*\Omega$ for all $x \in M$. Prove the following statements:

- (a) For all $\xi, \eta \in \mathcal{H}$, we have $\langle J\xi, J\eta \rangle = \langle \eta, \xi \rangle$.
- (b) For all $x, a \in M$, it holds true that $JxJ(a\Omega) = ax^*\Omega$.
- (c) If $x \in M'$ is given, we have $Jx\Omega = x^*\Omega$.

Deduce finally that JMJ = M'.

Hint: Switch the roles of M and M'. What does (c) tell us about this case?

Exercise 3. Fix any integer $m \in \mathbb{N}$, $m \geq 2$. Consider the chain of inclusions

$$M_m(\mathbb{C}) \hookrightarrow M_{m^2}(\mathbb{C}) \hookrightarrow M_{m^3}(\mathbb{C}) \hookrightarrow \ldots \hookrightarrow M_{m^n}(\mathbb{C}) \hookrightarrow M_{m^{n+1}}(\mathbb{C}) \hookrightarrow \ldots$$

which are given by

$$M_{m^n}(\mathbb{C}) \hookrightarrow M_{m^{n+1}}(\mathbb{C}), \quad B \mapsto \begin{pmatrix} B & & \\ & \ddots & \\ & & B \end{pmatrix}.$$

- (a) Justify that its union $M^{(m)} := \bigcup_{n \in \mathbb{N}} M_{m^n}(\mathbb{C})$ is a complex unital algebra and show that there exists a (well-defined!) tracial linear functional $\tau^{(m)} : M^{(m)} \to \mathbb{C}$ such that $\tau^{(m)}(B) = \operatorname{tr}_{m^n}(B)$ holds for any $B \in M_{m^n}(\mathbb{C})$. Recall that tr_{m^n} denotes the normalized trace on $M_{m^n}(\mathbb{C})$.
- (b) Denote by $\mathcal{H}^{(m)}$ the Hilbert space which is obtained by completion of $M^{(m)}$ with respect to the inner product given by $\langle A, B \rangle_{(m)} = \tau^{(m)}(AB^*)$. Prove that each $B \in M^{(m)}$ induces a bounded linear operator on $\mathcal{H}^{(m)}$, i.e., we can view $M^{(m)} \subset B(\mathcal{H}^{(m)})$.
- (c) Consider the von Neumann algebra $\mathcal{R} := \overline{M^{(m)}}^{\text{sot}} \subset B(\mathcal{H}^{(m)})$. Show that there exists a unique normal tracial state τ on \mathcal{R} .
- (d) Prove that \mathcal{R} is a type II₁-factor.

Hint: Since the center $Z(\mathcal{R}) := \mathcal{R} \cap \mathcal{R}'$ of \mathcal{R} is generated by its positive elements, factoriality follows as soon as we have shown that any positive $z \in Z(\mathcal{R})$ is a positive multiple of 1. For doing so, use the result obtained in (c).

It is a non-trivial result of Murray and von Neumann that \mathcal{R} does not depend on the special choice of m. In fact, the obtained von Neumann algebra \mathcal{R} is the hyperfinite II₁-factor. To see that \mathcal{R} is isomorphic to $L(S_{\infty})$, as the hyperfinite II₁-factor was introduced in the lecture, is again a non-trivial result of Murray and von Neumann.