

Assignments for the lecture on von Neumann algebras, subfactors, and planar algebras Summer term 2016

Assignment 4 for the tutorial on *Tuesday*, *June 21* (in SR 6)

Exercise 1. Let $p, q \in B(\mathcal{H})$ be orthogonal projections on a separable complex Hilbert space \mathcal{H} .

(a) Show that

$$\operatorname{s-lim}_{n \to \infty} (pqp)^n = p \wedge q$$

Hint: First show (for instance by using functional calculus) that the sequence $((pqp)^n)_{n=1}^{\infty}$ converges strongly to some projection $e \in B(\mathcal{H})$. Finally, in order to identify e as $p \wedge q$, consider expressions of the form $(pqp)^m q(pqp)^n$ for $m, n \in \mathbb{N}$.

(b) Deduce the formula stated in Remark 3.10 (3), i.e., prove that

$$\lim_{n \to \infty} (pq)^n = p \land q.$$

(c) Discuss the statements (a) and (b) in the case $\mathcal{H} = \mathbb{C}^3$ for the projections

$$p = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } q = u \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} u^*, \text{ where } u = \begin{pmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$$
for some $0 < \theta < \pi$.

Exercise 2. Let $(S_n)_{n=0}^{\infty}$ be the sequence of *Chebyshev polynomials of the second kind*, which are recursively defined by $S_0(x) = 1$, $S_1(x) = x$ and

$$xS_n(x) = S_{n+1}(x) + S_{n-1}(x)$$
 for all $n \ge 1$.

Prove the following statements:

(a) For all $n \ge 0$ and all $0 < \theta < \pi$, it holds true that

$$S_n(2\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin(\theta)}$$

please turn the page

(b) We have for all $n,m\geq 0$ that

$$\int_{-2}^{2} S_n(x) S_m(x) \frac{1}{2\pi} \sqrt{4 - x^2} \, dx = \delta_{n,m}$$

(c) For all $x \in [-2,2]$ and all $z \in \mathbb{C}$ with |z| < 1, we have that

$$\frac{1}{1 - xz + z^2} = \sum_{n=0}^{\infty} S_n(x) z^n.$$

(d) For $x, y \in [-2, 2]$ and all $n \ge 0$, it holds true that

$$\frac{S_n(x) - S_n(y)}{x - y} = \sum_{k=1}^n S_{k-1}(x) S_{n-k}(y).$$