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Out of the following six exercises, choose these two that you like at most. This means that we

do not expect that you work out a solution for all problems!

Given any finite dimensional von Neumann algebra M , we know from Exercise 2 (c), Assignment 3, that

M ∼= Mm1
(C)⊕ · · · ⊕Mml

(C)

for some l ∈ N and m1, . . . ,ml ∈ N. For any choice of ~t = (t1, . . . , tl)
T ∈ Rl

+, where R+ := (0,∞), we can
thus introduce a faithful trace τ on M by

τ := (t1 Trm1
)⊕ · · · ⊕ (tl Trml

).

In fact, it is easy to see that any faithful trace τ on M arises in this way, and in this case the corresponding
vector ~t is called the trace vector of τ . Obviously, the trace τ is normalized (i.e. τ(1) = 1), if and only if
t1m1 + · · ·+ tlml = 1 holds.

Exercise 1.

(a) In Exercise 3 (b), Assignment 3, we have constructed for any inclusion N ⊆ M of
finite dimensional von Neumann algebras a matrix ΛM

N . Consider now finite dimen-
sional von Neumann algebras N ⊆ M ⊆ P . Prove that the matrices corresponding
to these inclusions satisfy the relation

ΛP
N = ΛM

N ΛP
M .

(b) Take finite dimensional von Neumann algebras N ⊆ M , satisfying

N ∼= Mn1
(C)⊕ · · · ⊕Mnk

(C) and M ∼= Mm1
(C)⊕ · · · ⊕Mml

(C),

with the matrix
ΛM

N = (Λij)i=1,...,k
j=1,...,l

constructed according to Exercise 3 (b), Assignment 3. Moreover, let τN and τM be
a faithful tracial states on N and M , respectively, with corresponding trace vectors
~s = (s1, . . . , sk)

T and ~t = (t1, . . . , tl)
T . Prove that τM |N = τN if and only if ΛM

N
~t = ~s.
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It can be shown that the basic construction works equally well in the non-factor case. More precisely,
in the situation of the previous exercise and under the assumption that τM |N = τN holds, we can find
a projection eN ∈ B(L2(M, τM )), such that eN (xΩ) = EN (x)Ω holds for all x ∈ M , where Ω = 1̂ ∈
L2(M, τM ) and EN denotes the conditional expectation from M to N as in Theorem 3.2. We consider
then the von Neumann algebra 〈M, eN 〉 ⊆ B(L2(M, τM )) generated by M and eN .

Lemma (Jones, 1983). Let p1, . . . , pk be the minimal central projections of N . Then

(i) Jp1J, . . . , JpkJ are the minimal central projections of 〈M, eN 〉,

(ii) Λ
〈M,eN 〉
M = (ΛM

N )T (with the obvious identification of the indices pi ↔ JpiJ),

(iii) eNJpiJ = eNpi,

(iv) x 7→ eNxJpiJ is an isomorphism from piN onto (eNJpiJ)〈M, eN 〉(eNJpiJ).

Exercise 2. Consider the finite dimensional von Neumann algebras N ⊆ M given by

C⊕ C
∼=

−→ N ⊆ M := M2(C)

z1 ⊕ z2 7→

(

z1 0
0 z2

)

We endow M with the usual trace τM = tr2 and N with the restriction τN = τM |N .
Compute eN ∈ B(L2(M, τM )) and check explicitly the validity of the statements made in
the lemma above.

Following Jones, we call a faithful tracial state τ on M1 = 〈M, eN〉 a (λ, P )-trace, for λ > 0 and a
subalgebra P of M1, if τ extends τM and τ(eNx) = λτM (x) holds for all x ∈ P .

Theorem (Jones, 1983). Given λ > 0, there exists a (λ,M)-trace on M1, if and only if

ΛTΛ~t = λ−1~t and ΛΛT~s = λ−1~s, where Λ = ΛM
N . (1)

Exercise 3.

(a) Show that a (λ,N)-trace on M1 is also a (λ,M)-trace on M1.

(b) Prove the above theorem of Jones.

(c) Show that if condition (1) is satisfied for finite dimensional von Neumann algebras
N ⊆ M , endowed with traces such that τM |N = τN holds, then the basic construction
can be iterated in the sense that there is a (λ,M)-trace on M1 = 〈M, eN〉, a (λ,M1)-
trace on M2 = 〈M1, eM〉, and so on.

It was observed by Jones that the projections appearing in the Jones tower

N ⊆ M
e1=eN
⊆ M1

e2=eM
⊆ M2

e3=eM1

⊆ M3

e4=eM2

⊆ . . .

constructed according to part (c) of the previous exercise can be used to build a subfactor Pλ ⊆ P with
Jones index [P : Pλ] = λ−1. In fact, it can be shown that P is isomorphic to the hyperfinite II1-factor.



Exercise 4. Let n ∈ N with n ≥ 2 be fixed. Consider the symmetric matrix Λ = (Λij)
n
i,j=1

defined by

Λij :=

{

1, if |i− j| = 1

0, else
for i, j = 1, . . . , n,

i.e., we have

Λ =

















0 1 0 . . . 0

1 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . 0 1 0

















.

(a) Prove that the eigenvalues of Λ are precisely the zeros of the n-th Chebyshev poly-
nomial Sn of the second kind (cf. Exercise 2, Assignment 4), i.e.

{

2 cos
( kπ

n+ 1

)∣

∣

∣
k = 1, . . . , n

}

,

where an eigenvector corresponding to the eigenvalue λk = 2 cos
(

kπ
n+1

)

is given by

~tk =
(

sin
( kπ

n+ 1

)

, sin
( 2kπ

n+ 1

)

, . . . , sin
( nkπ

n+ 1

))T

.

(b) Deduce that all values in
{

4 cos2
( π

n + 1

)∣

∣

∣
n ≥ 2

}

show up as the Jones index for some subfactor of the hyperfinite II1-factor.

It is worth to point out that (1) gives an interesting connection to the famous Perron-Frobenius Theorem.
More precisely, the existence of a positive eigenvector ~t for the matrix P = ΛΛT (or analogously ~s for
P = ΛTΛ) implies that the corresponding eigenvalue λ−1 determines its norm by ‖Λ‖2 = ‖P‖ = λ−1

and hence the Jones index of the constructed subfactor Pλ ⊆ P , i.e. ‖Λ‖2 = [P : Pλ]. However, for this
purpose, we do not need the Perron-Frobenius Theorem in full generality. Hence, a more specialized proof
(which nevertheless follows ideas of the general proof) is more appropriate.

Exercise 5. Let a real matrix P = (Pij)
n
i,j=1 ∈ Mn(R) be given, which is both symmetric

(i.e. P T = P ) and non-negative (i.e. Pij ≥ 0 for all i, j = 1, . . . , n). Moreover, assume that
there exists a real eigenvector y = (y1, . . . , yn)

T of P , which satisfies y1, . . . , yn > 0, with
corresponding eigenvalue λ ≥ 0.

(a) On the set
Γn := {x = (x1, . . . , xn) ∈ R

n| x1, . . . , xn > 0}

consider the function

L : Γn → [0,∞), x 7→ max{s ≥ 0| sx ≤ Px},
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where x ≤ x′ for real vectors x = (x1, . . . , xn) and x′ = (x′

1, . . . , x
′

n) means that
xi ≤ x′

i holds for all i = 1, . . . , n. Prove that

sup
x∈Γn

L(x) = λ = L(y).

Hint: Consider the inner product of 〈x, y〉 for x ∈ Γn and check that we always
have 〈x, y〉 > 0 in this case.

(b) Deduce that ‖P‖ = λ.

Hint: Note that if λ1, . . . , λn are the ordered eigenvalues of any symmetric real
matrix P , listed according to their multiplicity, then ‖P‖ = max{|λ1|, . . . , |λn|}.

Exercise 6.

(a) Find a braid b whose closure b̂ yields the following link and compute its Jones
polynomial Vb̂(t).

Hint: Note that there are actually two different Jones polynomials related to the
picture above, depending on the choice of an orientation on both of its components,
since this will change the corresponding element in the braid group.

(b) Find a braid b whose closure b̂ yields the following knot and compute its Jones
polynomial V

b̂
(t).

Hint: Choose any point P in the plane, which does not belong to the given projection
of the knot, and fix an orientation of the knot. Try to deform the knot until its
orientation on any subarc goes in mathematical positive sense around P . Decompose
the obtained projection of the knot in sectors around P , such that each sector
contains at most one crossing of the knot.


