

Assignments for the lecture on von Neumann algebras, subfactors, and planar algebras Summer term 2016

$\begin{array}{c} {\bf Assignment} \ 6 \\ {\rm for \ the \ tutorial \ on} \ {\it Thursday, \ July \ 28} \ ({\rm in \ SR \ 6}) \end{array}$

Exercise 1 (von Neumann mean ergodic theorem). Let \mathcal{H} be a separable complex Hilbert space and let $U : \mathcal{H} \to \mathcal{H}$ be a unitary operator. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n \xi = \pi(\xi)$$
(1)

holds for any $\xi \in \mathcal{H}$, where π denotes the orthogonal projection from \mathcal{H} onto the closed subspace \mathcal{H}^U of all U-invariant vectors in \mathcal{H} , i.e. $\mathcal{H}^U := \{\xi \in \mathcal{H} | U\xi = \xi\}.$

Hint: Consider the (possibly non-closed) subspace $\mathcal{W} := \{U\xi - \xi | \xi \in \mathcal{H}\}$ of \mathcal{H} and show that

- (a) \mathcal{W} and \mathcal{H}^U are orthogonal,
- (b) formula (1) holds separately on \mathcal{H}^U and \mathcal{W} (and hence also on $\mathcal{H}^U + \mathcal{W}$),
- (c) formula (1) holds on $\overline{\mathcal{H}^U + \mathcal{W}}$,
- (d) we have $\overline{\mathcal{H}^U + \mathcal{W}} = \mathcal{H}$.

Exercise 2. By Lemma 7.1 and Lemma 7.2 of the lecture we know that any (faithful) trace tr on the Temperley-Lieb algebra $TL(\lambda) = \bigcup_{n>0} TL_n(\lambda)$

... is fully determined by its action on cyclically reduced words

 $w = e_{i(1)}e_{i(2)}\cdots e_{i(m)}$ with $|i(j) - i(k)| \ge 2$ whenever $j \ne k$,

 \dots and must take the same value on all cyclically reduced words of the same length m.

Use the von Neumann mean ergodic theorem stated in Exercise 1 in order to show that tr attains the value λ^m on each cyclically reduced word of length m (and hence coincides with the canonical trace τ on TL(λ)).

Hint: Generalize the example discussed in the proof of Proposition 7.3: given any cyclically reduced word $w = e_{i(1)}e_{i(2)}\cdots e_{i(m)}$, choose some appropriate index set $I \subseteq \mathbb{N}$ and consider the unital complex algebra $A_I \subseteq \text{TL}(\lambda)$ generated by $\{e_i | i \in I\}$. Find an interesting unitary operator on the corresponding Hilbert space $\mathcal{H} = L^2(A_I, \text{tr}|_{A_I})$.