Free and cyclic differential calculus and characterizations of gradients

Tobias Mai (joint work with Roland Speicher)

Saarland University

Probabilistic Operator Algebra Seminar University of California, Berkeley

April 20, 2020

Let $\mathbb{C}\langle \underline{x} \rangle = \mathbb{C}\langle x_1, \dots, x_n \rangle$ be the algebra of noncommutative polynomials in the *n* formal variables $\underline{x} = (x_1, \dots, x_n)$; each $p \in \mathbb{C}\langle \underline{x} \rangle$ is of the form

$$p = \sum_{k=0}^{d} \sum_{1 \le i_1, \dots, i_k \le n} a_{i_1, \dots, i_k} x_{i_1} \cdots x_{i_k}.$$

Let $\mathbb{C}\langle \underline{x} \rangle = \mathbb{C}\langle x_1, \dots, x_n \rangle$ be the algebra of noncommutative polynomials in the *n* formal variables $\underline{x} = (x_1, \dots, x_n)$; each $p \in \mathbb{C}\langle \underline{x} \rangle$ is of the form

$$p = \sum_{k=0}^{d} \sum_{1 \le i_1, \dots, i_k \le n} a_{i_1, \dots, i_k} x_{i_1} \cdots x_{i_k}.$$

Definition

• The free derivatives are the unique derivations

 $\partial_1,\ldots,\partial_n:\ \mathbb{C}\langle\underline{x}\rangle\to\mathbb{C}\langle\underline{x}\rangle\otimes\mathbb{C}\langle\underline{x}\rangle\quad\text{satisfying}\quad\partial_ix_j=\delta_{i=j}1\otimes 1.$

Let $\mathbb{C}\langle \underline{x} \rangle = \mathbb{C}\langle x_1, \dots, x_n \rangle$ be the algebra of noncommutative polynomials in the *n* formal variables $\underline{x} = (x_1, \dots, x_n)$; each $p \in \mathbb{C}\langle \underline{x} \rangle$ is of the form

$$p = \sum_{k=0}^{d} \sum_{1 \le i_1, \dots, i_k \le n} a_{i_1, \dots, i_k} x_{i_1} \cdots x_{i_k}.$$

Definition

• The free derivatives are the unique derivations

 $\partial_1,\ldots,\partial_n:\ \mathbb{C}\langle\underline{x}\rangle\to\mathbb{C}\langle\underline{x}\rangle\otimes\mathbb{C}\langle\underline{x}\rangle\quad\text{satisfying}\quad \partial_ix_j=\delta_{i=j}1\otimes 1.$

• The cyclic derivatives are the linear mappings

 $\mathcal{D}_1, \dots, \mathcal{D}_n: \ \mathbb{C}\langle \underline{x}
angle o \mathbb{C}\langle \underline{x}
angle \quad ext{defined by} \quad \mathcal{D}_j:=\mu \circ \sigma \circ \partial_j,$

Let $\mathbb{C}\langle \underline{x} \rangle = \mathbb{C}\langle x_1, \dots, x_n \rangle$ be the algebra of noncommutative polynomials in the *n* formal variables $\underline{x} = (x_1, \dots, x_n)$; each $p \in \mathbb{C}\langle \underline{x} \rangle$ is of the form

$$p = \sum_{k=0}^{d} \sum_{1 \le i_1, \dots, i_k \le n} a_{i_1, \dots, i_k} x_{i_1} \cdots x_{i_k}.$$

Definition

• The free derivatives are the unique derivations

 $\partial_1,\ldots,\partial_n:\ \mathbb{C}\langle\underline{x}\rangle\to\mathbb{C}\langle\underline{x}\rangle\otimes\mathbb{C}\langle\underline{x}\rangle\quad\text{satisfying}\quad\partial_ix_j=\delta_{i=j}1\otimes 1.$

• The cyclic derivatives are the linear mappings

 $\mathcal{D}_1, \dots, \mathcal{D}_n: \mathbb{C}\langle \underline{x}
angle o \mathbb{C}\langle \underline{x}
angle$ defined by $\mathcal{D}_j := \mu \circ \sigma \circ \partial_j,$

where $\sigma: \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$, $p_1 \otimes p_2 \mapsto p_2 \otimes p_1$ (flip)

Let $\mathbb{C}\langle \underline{x} \rangle = \mathbb{C}\langle x_1, \dots, x_n \rangle$ be the algebra of noncommutative polynomials in the *n* formal variables $\underline{x} = (x_1, \dots, x_n)$; each $p \in \mathbb{C}\langle \underline{x} \rangle$ is of the form

$$p = \sum_{k=0}^{d} \sum_{1 \le i_1, \dots, i_k \le n} a_{i_1, \dots, i_k} x_{i_1} \cdots x_{i_k}.$$

Definition

The free derivatives are the unique derivations

 $\partial_1,\ldots,\partial_n:\ \mathbb{C}\langle\underline{x}\rangle\to\mathbb{C}\langle\underline{x}\rangle\otimes\mathbb{C}\langle\underline{x}\rangle\quad\text{satisfying}\quad\partial_ix_j=\delta_{i=j}1\otimes 1.$

• The cyclic derivatives are the linear mappings

 $\mathcal{D}_1, \dots, \mathcal{D}_n: \ \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \quad \text{defined by} \quad \mathcal{D}_j := \mu \circ \sigma \circ \partial_j,$

where $\sigma : \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle, \quad p_1 \otimes p_2 \mapsto p_2 \otimes p_1 \quad (flip)$ $\mu : \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle, \quad p_1 \otimes p_2 \mapsto p_1 p_2 \quad (multiplication)$

$\partial_1, \dots, \partial_n: \ \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle \text{ derivations, } \ \partial_i x_j = \delta_{i=j} 1 \otimes 1$

 $\partial_1, \dots, \partial_n: \ \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ derivations, $\partial_i x_j = \delta_{i=j} 1 \otimes 1$

• $\partial_j: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a derivation in the sense that

 $\partial_j(p_1p_2) = \partial_j(p_1) \cdot p_2 + p_1 \cdot \partial_j(p_2) \quad \text{for all } p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle.$

 $\partial_1, \dots, \partial_n: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ derivations, $\partial_i x_j = \delta_{i=j} 1 \otimes 1$

• $\partial_j: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a derivation in the sense that

 $\partial_j(p_1p_2) = \partial_j(p_1) \cdot p_2 + p_1 \cdot \partial_j(p_2) \quad \text{for all } p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle.$

• Note that $\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a $\mathbb{C}\langle \underline{x} \rangle$ -bimodule with respect to the action $p_1 \cdot (q_1 \otimes q_2) \cdot p_2 := (p_1q_1) \otimes (q_2p_2).$

 $\partial_1, \dots, \partial_n: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ derivations, $\partial_i x_j = \delta_{i=j} 1 \otimes 1$

• $\partial_j: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a derivation in the sense that

 $\partial_j(p_1p_2) = \partial_j(p_1) \cdot p_2 + p_1 \cdot \partial_j(p_2) \quad \text{for all } p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle.$

• Note that $\mathbb{C}\langle \underline{x}\rangle\otimes\mathbb{C}\langle \underline{x}\rangle$ is a $\mathbb{C}\langle \underline{x}\rangle$ -bimodule with respect to the action

 $p_1 \cdot (q_1 \otimes q_2) \cdot p_2 := (p_1q_1) \otimes (q_2p_2).$

Example

Let n = 2 and consider $p = x_1 x_2 x_1 x_2$. Then

$$\partial_1 p = 1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2,$$

$$\partial_2 p = x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1.$$

 $\partial_1, \dots, \partial_n: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ derivations, $\partial_i x_j = \delta_{i=j} 1 \otimes 1$

• $\partial_j: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a derivation in the sense that

 $\partial_j(p_1p_2) = \partial_j(p_1) \cdot p_2 + p_1 \cdot \partial_j(p_2) \quad \text{for all } p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle.$

• Note that $\mathbb{C}\langle \underline{x}\rangle\otimes\mathbb{C}\langle \underline{x}\rangle$ is a $\mathbb{C}\langle \underline{x}\rangle$ -bimodule with respect to the action

 $p_1 \cdot (q_1 \otimes q_2) \cdot p_2 := (p_1 q_1) \otimes (q_2 p_2).$

Example

Let n = 2 and consider $p = x_1 x_2 x_1 x_2$. Then

 $\partial_1 p = 1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2,$ $\partial_2 p = x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1.$

 $\partial_1, \dots, \partial_n: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ derivations, $\partial_i x_j = \delta_{i=j} 1 \otimes 1$

• $\partial_j: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a derivation in the sense that

 $\partial_j(p_1p_2) = \partial_j(p_1) \cdot p_2 + p_1 \cdot \partial_j(p_2) \quad \text{for all } p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle.$

• Note that $\mathbb{C}\langle \underline{x}\rangle\otimes\mathbb{C}\langle \underline{x}\rangle$ is a $\mathbb{C}\langle \underline{x}\rangle$ -bimodule with respect to the action

 $p_1 \cdot (q_1 \otimes q_2) \cdot p_2 := (p_1q_1) \otimes (q_2p_2).$

Example

Let n = 2 and consider $p = x_1 x_2 x_1 x_2$. Then

$$\partial_1 p = 1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2,$$

$$\partial_2 p = x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1.$$

 $\partial_1, \dots, \partial_n: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ derivations, $\partial_i x_j = \delta_{i=j} 1 \otimes 1$

• $\partial_j: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a derivation in the sense that

 $\partial_j(p_1p_2) = \partial_j(p_1) \cdot p_2 + p_1 \cdot \partial_j(p_2) \quad \text{for all } p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle.$

• Note that $\mathbb{C}\langle \underline{x}\rangle\otimes\mathbb{C}\langle \underline{x}\rangle$ is a $\mathbb{C}\langle \underline{x}\rangle$ -bimodule with respect to the action

 $p_1 \cdot (q_1 \otimes q_2) \cdot p_2 := (p_1q_1) \otimes (q_2p_2).$

Example

Let n = 2 and consider $p = x_1 x_2 x_1 x_2$. Then

$$\partial_1 p = 1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2,$$

$$\partial_2 p = \mathbf{x_1} \otimes \mathbf{x_1} \mathbf{x_2} + x_1 x_2 x_1 \otimes 1.$$

 $\partial_1, \dots, \partial_n: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ derivations, $\partial_i x_j = \delta_{i=j} 1 \otimes 1$

• $\partial_j: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle$ is a derivation in the sense that

 $\partial_j(p_1p_2) = \partial_j(p_1) \cdot p_2 + p_1 \cdot \partial_j(p_2) \quad \text{for all } p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle.$

• Note that $\mathbb{C}\langle \underline{x}\rangle\otimes\mathbb{C}\langle \underline{x}\rangle$ is a $\mathbb{C}\langle \underline{x}\rangle$ -bimodule with respect to the action

 $p_1 \cdot (q_1 \otimes q_2) \cdot p_2 := (p_1q_1) \otimes (q_2p_2).$

Example

Let n = 2 and consider $p = x_1 x_2 x_1 x_2$. Then

$$\partial_1 p = 1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2,$$

$$\partial_2 p = x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1.$$

$\mathcal{D}_1, \dots, \mathcal{D}_n: \mathbb{C}\langle \underline{x} angle o \mathbb{C}\langle \underline{x} angle$ linear, $\mathcal{D}_j := \mu \circ \sigma \circ \partial_j$

$\mathcal{D}_1, \dots, \mathcal{D}_n: \ \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle$ linear, $\mathcal{D}_j := \mu \circ \sigma \circ \partial_j$

• \mathcal{D}_j : $\mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle$ is not a derivation if $n \ge 2$, but satisfies $\mathcal{D}_j(p_1p_2) = \tilde{\partial}_j(p_1) \sharp p_2 + \tilde{\partial}_j(p_2) \sharp p_1$ for all $p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle$.

$\mathcal{D}_1, \dots, \mathcal{D}_n: \ \mathbb{C}\langle \underline{x} \rangle o \mathbb{C}\langle \underline{x} \rangle$ linear, $\mathcal{D}_j := \mu \circ \sigma \circ \partial_j$

- \mathcal{D}_j : $\mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle$ is not a derivation if $n \ge 2$, but satisfies $\mathcal{D}_j(p_1p_2) = \tilde{\partial}_j(p_1) \sharp p_2 + \tilde{\partial}_j(p_2) \sharp p_1$ for all $p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle$.
- ullet Here, we use the notation $ilde{\partial}_j:=\sigma\circ\partial_j$ and the bilinear map
 - $\sharp: \ (\mathbb{C}\langle \underline{x}\rangle \otimes \mathbb{C}\langle \underline{x}\rangle) \times \mathbb{C}\langle \underline{x}\rangle \to \mathbb{C}\langle \underline{x}\rangle, \quad (p_1 \otimes p_2) \sharp q := p_1 q p_2.$

$\mathcal{D}_1, \dots, \mathcal{D}_n: \ \mathbb{C}\langle \underline{x} \rangle o \mathbb{C}\langle \underline{x} \rangle$ linear, $\mathcal{D}_j := \mu \circ \sigma \circ \partial_j$

• \mathcal{D}_j : $\mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle$ is not a derivation if $n \ge 2$, but satisfies $\mathcal{D}_j(p_1p_2) = \tilde{\partial}_j(p_1) \sharp p_2 + \tilde{\partial}_j(p_2) \sharp p_1$ for all $p_1, p_2 \in \mathbb{C}\langle \underline{x} \rangle$.

• Here, we use the notation $\tilde{\partial}_j := \sigma \circ \partial_j$ and the bilinear map $\sharp : (\mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle) \times \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle, \quad (p_1 \otimes p_2) \sharp q := p_1 q p_2.$

Example

Let n=2 and consider again $p=x_1x_2x_1x_2$. We already know that

 $\partial_1 p = 1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2 \qquad \text{and} \qquad \partial_2 p = x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1.$

Hence, we get that

 $\mathcal{D}_1 p = 2 x_2 x_1 x_2$ and $\mathcal{D}_2 p = 2 x_1 x_2 x_1$.

• For every $\underline{X} = (X_1, \ldots, X_n) \in M_N(\mathbb{C})^n$, we have the evaluation homomorphism

 $\operatorname{ev}_{\underline{X}} : \mathbb{C}\langle \underline{x} \rangle \to M_N(\mathbb{C}), \quad x_{i_1}x_{i_2}\cdots x_{i_k} \mapsto X_{i_1}X_{i_2}\cdots X_{i_k}.$

• For every $\underline{X} = (X_1, \ldots, X_n) \in M_N(\mathbb{C})^n$, we have the evaluation homomorphism

 $\operatorname{ev}_{\underline{X}} : \mathbb{C}\langle \underline{x} \rangle \to M_N(\mathbb{C}), \quad x_{i_1}x_{i_2}\cdots x_{i_k} \mapsto X_{i_1}X_{i_2}\cdots X_{i_k}.$

• Consequently, every $p \in \mathbb{C}\langle \underline{x}
angle$ induces matrix functions

 $p: M_N(\mathbb{C})^n \to M_N(\mathbb{C}), \quad \underline{X} \mapsto p(\underline{X}) := ev_{\underline{X}}(p).$

• For every $\underline{X} = (X_1, \ldots, X_n) \in M_N(\mathbb{C})^n$, we have the evaluation homomorphism

 $\operatorname{ev}_{\underline{X}} : \mathbb{C}\langle \underline{x} \rangle \to M_N(\mathbb{C}), \quad x_{i_1}x_{i_2}\cdots x_{i_k} \mapsto X_{i_1}X_{i_2}\cdots X_{i_k}.$

• Consequently, every $p \in \mathbb{C}\langle \underline{x}
angle$ induces matrix functions

 $p: M_N(\mathbb{C})^n \to M_N(\mathbb{C}), \quad \underline{X} \mapsto p(\underline{X}) := ev_{\underline{X}}(p).$

At each point $\underline{X} = (X_1, \dots, X_n) \in M_N(\mathbb{C})^n$ and for every direction $\underline{H} = (H_1, \dots, H_n) \in M_N(\mathbb{C})^n$, we have for the directional derivatives

$$\frac{\mathrm{d}}{\mathrm{d}t} p(\underline{X} + t\underline{H}) \Big|_{t=0} = \sum_{j=1}^{n} (\partial_j p)(\underline{X}) \sharp H_j,$$

• For every $\underline{X} = (X_1, \ldots, X_n) \in M_N(\mathbb{C})^n$, we have the evaluation homomorphism

 $\operatorname{ev}_{\underline{X}} : \mathbb{C}\langle \underline{x} \rangle \to M_N(\mathbb{C}), \quad x_{i_1}x_{i_2}\cdots x_{i_k} \mapsto X_{i_1}X_{i_2}\cdots X_{i_k}.$

• Consequently, every $p\in\mathbb{C}\langle\underline{x}
angle$ induces matrix functions

 $p: M_N(\mathbb{C})^n \to M_N(\mathbb{C}), \quad \underline{X} \mapsto p(\underline{X}) := \operatorname{ev}_{\underline{X}}(p).$

At each point $\underline{X} = (X_1, \dots, X_n) \in M_N(\mathbb{C})^n$ and for every direction $\underline{H} = (H_1, \dots, H_n) \in M_N(\mathbb{C})^n$, we have for the directional derivatives

$$\frac{\mathrm{d}}{\mathrm{d}t} p(\underline{X} + t\underline{H}) \Big|_{t=0} = \sum_{j=1}^{n} (\partial_{j}p)(\underline{X}) \sharp H_{j},$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{tr}_{N} \left(p(\underline{X} + t\underline{H}) \right) \Big|_{t=0} = \sum_{j=1}^{n} \operatorname{tr}_{N} \left((\mathcal{D}_{j}p)(\underline{X}) H_{j} \right).$$

Question 1

Let $\underline{q}=(q_1,\ldots,q_n)\in\mathbb{C}\langle\underline{x}\rangle^n$ be given. When does there exist a $p\in\mathbb{C}\langle\underline{x}\rangle$ such that

$$\underline{q} = \mathcal{D}p$$
 for $\mathcal{D}p := (\mathcal{D}_1 p, \dots, \mathcal{D}_n p)$?

Question 1

Let $\underline{q} = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{q} = \mathcal{D}p$$
 for $\mathcal{D}p := (\mathcal{D}_1 p, \dots, \mathcal{D}_n p)$?

Question 2

Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{u} = \partial p$$
 for $\partial p := (\partial_1 p, \dots, \partial_n p)$?

Question 1

Let $\underline{q} = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{q} = \mathcal{D}p$$
 for $\mathcal{D}p := (\mathcal{D}_1 p, \dots, \mathcal{D}_n p)$?

Question 2

Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{u} = \partial p$$
 for $\partial p := (\partial_1 p, \dots, \partial_n p)$?

Goal in both cases

Question 1

Let $\underline{q} = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{q} = \mathcal{D}p$$
 for $\mathcal{D}p := (\mathcal{D}_1 p, \dots, \mathcal{D}_n p)$?

Question 2

Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{u} = \partial p$$
 for $\partial p := (\partial_1 p, \dots, \partial_n p)$?

Goal in both cases

• Formulate criteria which completely characterize gradients.

Question 1

Let $\underline{q} = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{q} = \mathcal{D}p$$
 for $\mathcal{D}p := (\mathcal{D}_1 p, \dots, \mathcal{D}_n p)$?

Question 2

Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. When does there exist a $p \in \mathbb{C}\langle \underline{x} \rangle$ such that

$$\underline{u} = \partial p$$
 for $\partial p := (\partial_1 p, \dots, \partial_n p)$?

Goal in both cases

- Formulate criteria which completely characterize gradients.
- Provide some recipe to construct an antiderivative p.

Definition

• The number operator $N:\mathbb{C}\langle\underline{x}
angle
ightarrow\mathbb{C}\langle\underline{x}
angle$ is defined by

$$N1 = 0$$
 and $Nx_{i_1} \cdots x_{i_k} = k x_{i_1} \cdots x_{i_k}$.

Definition

• The number operator $N:\mathbb{C}\langle\underline{x}
angle
ightarrow\mathbb{C}\langle\underline{x}
angle$ is defined by

$$N1=0$$
 and $Nx_{i_1}\cdots x_{i_k}=k\,x_{i_1}\cdots x_{i_k}.$

• The cyclic symmetrization operator $C:\mathbb{C}\langle\underline{x}
angle
ightarrow\mathbb{C}\langle\underline{x}
angle$ is defined by

$$C1 = 0$$
 and $Cx_{i_1} \cdots x_{i_k} = \sum_{p=1}^k x_{i_{p+1}} \cdots x_{i_k} x_{i_1} \cdots x_{i_p}.$

Definition

• The number operator $N:\mathbb{C}\langle\underline{x}
angle
ightarrow\mathbb{C}\langle\underline{x}
angle$ is defined by

$$N1=0$$
 and $Nx_{i_1}\cdots x_{i_k}=k\,x_{i_1}\cdots x_{i_k}.$

• The cyclic symmetrization operator $C: \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle$ is defined by

$$C1 = 0 \qquad \text{and} \qquad Cx_{i_1} \cdots x_{i_k} = \sum_{p=1}^k x_{i_{p+1}} \cdots x_{i_k} x_{i_1} \cdots x_{i_p}.$$

Put $\mathbb{C}^{(k)}\langle \underline{x} \rangle := \operatorname{span}_{\mathbb{C}} \{ x_{i_1} \cdots x_{i_k} \mid 1 \leq i_1, \dots, i_k \leq n \}$. With respect to $\mathbb{C}\langle \underline{x} \rangle = \bigoplus_{k \geq 0} \mathbb{C}^{(k)}\langle \underline{x} \rangle$ and $\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle = \bigoplus_{k,l \geq 0} \mathbb{C}^{(k)}\langle \underline{x} \rangle \otimes \mathbb{C}^{(l)}\langle \underline{x} \rangle$,

both $N + \mathrm{id}$ and $N \otimes \mathrm{id} + \mathrm{id} \otimes N + \mathrm{id} \otimes \mathrm{id}$ are diagonal and invertible.

Theorem (Voiculescu, 2000)

Let $q = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. The following are equivalent:

1 \underline{q} is a cyclic gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{q} = \mathcal{D}p$.

Theorem (Voiculescu, 2000)

Let $q = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. The following are equivalent:

1 \underline{q} is a cyclic gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{q} = \mathcal{D}p$. 2 $\sum_{j=1}^{n} [q_j, x_j] = 0.$

Theorem (Voiculescu, 2000) Let $\underline{q} = (q_1, \dots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. The following are equivalent: • \underline{q} is a cyclic gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{q} = \mathcal{D}p$. • $\sum_{j=1}^{n} [q_j, x_j] = 0$. • $\sum_{j=1}^{n} x_j q_j \in \operatorname{ran} C$.

Theorem (Voiculescu, 2000) Let $q = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. The following are equivalent: **1** q is a cyclic gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $q = \mathcal{D}p$. i=1i=1 $\mathcal{D}_i\left(\sum_{i=1}^n x_j q_j\right) = (N + \mathrm{id})q_i$ • For $i = 1, \ldots, n$, we have:

Theorem (Voiculescu, 2000) Let $q = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ be given. The following are equivalent: **1** q is a cyclic gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $q = \mathcal{D}p$. i=1i=1 $\mathcal{D}_i\left(\sum_{i=1}^n x_j q_j\right) = (N + \mathrm{id})q_i$ • For $i = 1, \ldots, n$, we have:

Integrability condition of Schwarz type (M., Speicher, 2019) Solution For i, j = 1, ..., n, we have: $\partial_i q_j = \sigma(\partial_j q_i)$

Example

Let n=2 and consider again $p=x_1x_2x_1x_2$. We have checked that

$$\underline{q} = (q_1, q_2) := (2 x_2 x_1 x_2, \ 2 x_1 x_2 x_1)$$

is the cyclic gradient of p.

Example

Let n=2 and consider again $p=x_1x_2x_1x_2$. We have checked that

$$\underline{q} = (q_1, q_2) := (2 x_2 x_1 x_2, \ 2 x_1 x_2 x_1)$$

is the cyclic gradient of p. We verify the Schwarz integrability condition by

$$\begin{aligned} \partial_1 q_1 &= 2 \, x_2 \otimes x_2, \\ \partial_2 q_1 &= 2 \, (1 \otimes x_1 x_2 + x_2 x_1 \otimes 1), \\ \partial_1 q_2 &= 2 \, (1 \otimes x_2 x_1 + x_1 x_2 \otimes 1), \\ \partial_2 q_2 &= 2 \, x_1 \otimes x_1, \end{aligned}$$

Example

Let n=2 and consider again $p=x_1x_2x_1x_2$. We have checked that

$$\underline{q} = (q_1, q_2) := (2 x_2 x_1 x_2, \ 2 x_1 x_2 x_1)$$

is the cyclic gradient of p. We verify the Schwarz integrability condition by

$$\begin{aligned} \partial_1 q_1 &= 2 \, x_2 \otimes x_2, \\ \partial_2 q_1 &= 2 \, (1 \otimes x_1 x_2 + x_2 x_1 \otimes 1), \\ \partial_1 q_2 &= 2 \, (1 \otimes x_2 x_1 + x_1 x_2 \otimes 1), \\ \partial_2 q_2 &= 2 \, x_1 \otimes x_1, \end{aligned}$$

from where we see that indeed

$$\partial_1 q_1 = \sigma(\partial_1 q_1), \quad \partial_2 q_2 = \sigma(\partial_2 q_2), \quad \text{and} \quad \partial_1 q_2 = \sigma(\partial_2 q_1).$$

How to find a cyclic antiderivative

How to find a cyclic antiderivative

Lemma

Suppose that $\underline{q} = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ satisfies $\sum_{j=1}^n x_j q_j \in \operatorname{ran} C$. Then each $p \in \mathbb{C}\langle \underline{x} \rangle$ which solves the equation

$$Cp = \sum_{j=1}^{n} x_j q_j$$

is a cyclic antiderivative of \underline{q} , i.e., we have that $\mathcal{D}p = \underline{q}$.

How to find a cyclic antiderivative

Lemma

Suppose that $\underline{q} = (q_1, \ldots, q_n) \in \mathbb{C}\langle \underline{x} \rangle^n$ satisfies $\sum_{j=1}^n x_j q_j \in \operatorname{ran} C$. Then each $p \in \mathbb{C}\langle \underline{x} \rangle$ which solves the equation

$$Cp = \sum_{j=1}^{n} x_j q_j$$

is a cyclic antiderivative of \underline{q} , i.e., we have that $\mathcal{D}p = \underline{q}$.

Example

Let n = 2 and consider again $p = x_1 x_2 x_1 x_2$. For the tuple

$$\underline{q} = (q_1, q_2) = (2 x_2 x_1 x_2, \ 2 x_1 x_2 x_1),$$

of which we know that it is the cyclic derivative of p, we confirm that

$$x_1q_1 + x_2q_2 = 2 x_1x_2x_1x_2 + 2 x_2x_1x_2x_1 = Cx_1x_2x_1x_2 = Cp.$$

Theorem (M., Speicher, 2019) Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. Then the following are equivalent:

() \underline{u} is a free gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{u} = \partial p$.

Theorem (M., Speicher, 2019)

Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. Then the following are equivalent:

() \underline{u} is a free gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{u} = \partial p$.

② There exists
$$p\in\mathbb{C}\langle\underline{x}
angle$$
 such that $\sum_{j=1}^n u_j\sharp[x_j,1\otimes 1]=[p,1\otimes 1]$

Theorem (M., Speicher, 2019) Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C} \langle \underline{x} \rangle)^n$ be given. Then the following are

equivalent:

() \underline{u} is a free gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{u} = \partial p$.

There exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\sum_{j=1}^{n} u_j \sharp [x_j, 1 \otimes 1] = [p, 1 \otimes 1].$ For $i, j = 1, \ldots, n$, we have: $(\operatorname{id} \otimes \partial_i)(u_i) = (\partial_i \otimes \operatorname{id})(u_i)$

Theorem (M., Speicher, 2019)

Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. Then the following are equivalent:

• \underline{u} is a free gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{u} = \partial p$.

j=1

Theorem (M., Speicher, 2019)

Let $\underline{u} = (u_1, \ldots, u_n) \in (\mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle)^n$ be given. Then the following are equivalent:

• \underline{u} is a free gradient, i.e., there exists $p \in \mathbb{C}\langle \underline{x} \rangle$ such that $\underline{u} = \partial p$.

There exists p ∈ C(x) such that

$$\sum_{j=1}^{n} u_j \sharp [x_j, 1 \otimes 1] = [p, 1 \otimes 1].$$

For i, j = 1,...,n, we have: (id $\otimes \partial_i$)(u_j) = ($\partial_j \otimes id$)(u_i)
For i = 1,...,n: $\partial_i \left(\sum_{j=1}^{n} u_j \sharp x_j\right) = (N \otimes id + id \otimes N + id \otimes id)(u_i)$

Every $p \in \mathbb{C}\langle \underline{x} \rangle$ which solves the equation $Np = \sum_{j=1}^{n} u_j \sharp x_j$ is a free antiderivative of \underline{u} , i.e., it satisfies $\underline{u} = \partial p$.

i=1

Example

Let n=2 and consider again $p=x_1x_2x_1x_2$. We have already seen that

 $\underline{u} = (u_1, u_2) := (1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2, \ x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1)$

is the free gradient of p.

Example

Let n=2 and consider again $p=x_1x_2x_1x_2$. We have already seen that

 $\underline{u} = (u_1, u_2) := (1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2, \ x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1)$

is the free gradient of p. We verify the Schwarz integrability condition by

Example

Let n=2 and consider again $p=x_1x_2x_1x_2$. We have already seen that

 $\underline{u} = (u_1, u_2) := (1 \otimes x_2 x_1 x_2 + x_1 x_2 \otimes x_2, \ x_1 \otimes x_1 x_2 + x_1 x_2 x_1 \otimes 1)$

is the free gradient of p. We verify the Schwarz integrability condition by

We compute

$$u_1 \sharp x_1 + u_2 \sharp x_2 = 4 \, x_1 x_2 x_1 x_2 = N(x_1 x_2 x_1 x_2) = Np.$$

Questions

• How much do the results depend on the particular structure of $\mathbb{C}\langle \underline{x}\rangle$?

Questions

- How much do the results depend on the particular structure of $\mathbb{C}\langle \underline{x} \rangle$?
- Can the proofs be given by using only the arithmetic properties of free and cyclic derivatives?

Questions

- How much do the results depend on the particular structure of $\mathbb{C}\langle \underline{x} \rangle$?
- Can the proofs be given by using only the arithmetic properties of free and cyclic derivatives?
- Can one go beyond the polynomial case?

Questions

- How much do the results depend on the particular structure of $\mathbb{C}\langle \underline{x} \rangle$?
- Can the proofs be given by using only the arithmetic properties of free and cyclic derivatives?
- Can one go beyond the polynomial case?
- What role do the maps $\underline{u} \mapsto \sum_{j=1}^n u_j \sharp x_j$ and $\underline{q} \mapsto \sum_{j=1}^n x_j q_j$ play?

Questions

- How much do the results depend on the particular structure of $\mathbb{C}\langle \underline{x} \rangle$?
- Can the proofs be given by using only the arithmetic properties of free and cyclic derivatives?
- Can one go beyond the polynomial case?
- What role do the maps $\underline{u} \mapsto \sum_{j=1}^n u_j \sharp x_j$ and $\underline{q} \mapsto \sum_{j=1}^n x_j q_j$ play?

Voiculescu's multivariate generalized difference quotient rings!

Questions

- How much do the results depend on the particular structure of $\mathbb{C}\langle \underline{x} \rangle$?
- Can the proofs be given by using only the arithmetic properties of free and cyclic derivatives?
- Can one go beyond the polynomial case?
- What role do the maps $\underline{u} \mapsto \sum_{j=1}^n u_j \sharp x_j$ and $\underline{q} \mapsto \sum_{j=1}^n x_j q_j$ play?

Voiculescu's multivariate generalized difference quotient rings!

Free probability motivation

Let (\mathcal{M}, τ) be a tracial W^* -probability space such that $\mathcal{M} = W^*(\underline{X})$ for some $\underline{X} = (X_1, \ldots, X_n) \in \mathcal{M}_{sa}^n$ with $\Phi^*(\underline{X}) < \infty$. It is known that the conjugate variables $\underline{\xi} = (\xi_1, \ldots, \xi_n)$ of \underline{X} have the following properties:

Questions

- How much do the results depend on the particular structure of $\mathbb{C}\langle \underline{x} \rangle$?
- Can the proofs be given by using only the arithmetic properties of free and cyclic derivatives?
- Can one go beyond the polynomial case?
- What role do the maps $\underline{u} \mapsto \sum_{j=1}^n u_j \sharp x_j$ and $\underline{q} \mapsto \sum_{j=1}^n x_j q_j$ play?

Voiculescu's multivariate generalized difference quotient rings!

Free probability motivation

Let (\mathcal{M}, τ) be a tracial W^* -probability space such that $\mathcal{M} = W^*(\underline{X})$ for some $\underline{X} = (X_1, \ldots, X_n) \in \mathcal{M}_{sa}^n$ with $\Phi^*(\underline{X}) < \infty$. It is known that the conjugate variables $\underline{\xi} = (\xi_1, \ldots, \xi_n)$ of \underline{X} have the following properties:

- $\sum_{j=1}^{n} [\xi_j, X_j] = 0$ [Voiculescu, 1999]
- $\overline{\partial}_{X_i}\xi_j = \sigma(\overline{\partial}_{X_j}\xi_i)$ if $\xi_1, \dots, \xi_n \in \bigcap_{j=1}^n \operatorname{dom}(\overline{\partial}_{X_j})$ [Dabrowski, 2014]

Tobias Mai (Saarland University)

Definition (Voiculescu, 2000)

A multivariable generalized difference quotient ring (A,μ,∂) consists of

• a complex (not necessarily unital) algebra A with the induced multiplication mapping $\mu: A \otimes A \rightarrow A, a_1 \otimes a_2 \mapsto a_1a_2$, and

• a linear map $\partial = (\partial_1, \dots, \partial_n) : A \to (A \otimes A)^n$, the gradient of A,

such that the following conditions are satisfied:

Definition (Voiculescu, 2000)

A multivariable generalized difference quotient ring (A,μ,∂) consists of

- a complex (not necessarily unital) algebra A with the induced multiplication mapping $\mu: A \otimes A \rightarrow A, a_1 \otimes a_2 \mapsto a_1 a_2$, and
- a linear map $\partial = (\partial_1, \dots, \partial_n) : A \to (A \otimes A)^n$, the gradient of A,

such that the following conditions are satisfied:

① The mappings $\partial_1, \ldots, \partial_n$ satisfy the joint coassociativity relation

 $(\partial_i \otimes \operatorname{id}_A) \circ \partial_j = (\operatorname{id}_A \otimes \partial_j) \circ \partial_i \quad \text{for } i, j = 1, \dots, n.$

Definition (Voiculescu, 2000)

A multivariable generalized difference quotient ring (A,μ,∂) consists of

- a complex (not necessarily unital) algebra A with the induced multiplication mapping $\mu: A \otimes A \rightarrow A, a_1 \otimes a_2 \mapsto a_1 a_2$, and
- a linear map $\partial = (\partial_1, \dots, \partial_n) : A o (A \otimes A)^n$, the gradient of A,

such that the following conditions are satisfied:

① The mappings $\partial_1, \ldots, \partial_n$ satisfy the joint coassociativity relation

 $(\partial_i \otimes \operatorname{id}_A) \circ \partial_j = (\operatorname{id}_A \otimes \partial_j) \circ \partial_i \quad \text{for } i, j = 1, \dots, n.$

2 Each ∂_i is a $A \otimes A$ -valued derivation on (A, μ) , i.e., we have that

 $\partial_i \circ \mu = (\mu \otimes \mathrm{id}_A) \circ (\mathrm{id}_A \otimes \partial_i) + (\mathrm{id}_A \otimes \mu) \circ (\partial_i \otimes \mathrm{id}_A).$

Graded and weakly graded multivariable GDQ rings

Graded and weakly graded multivariable GDQ rings

Definition (Voiculescu, 2000; M., Speicher, 2019)

A multivariable GDQ ring (A, μ, ∂) is called

• weakly graded, if there exits a linear mapping $L: A \to A$ which is a coderivation with respect to each ∂_i , i.e., we have that

 $\partial_i \circ L = (L \otimes \mathrm{id}_A + \mathrm{id}_A \otimes L) \circ \partial_i.$

In this case, we say that L is a weak grading of (A, μ, ∂) and we call $N := L - \mathrm{id}_A$ the associated number operator.

Graded and weakly graded multivariable GDQ rings

Definition (Voiculescu, 2000; M., Speicher, 2019)

A multivariable GDQ ring (A,μ,∂) is called

• weakly graded, if there exits a linear mapping $L: A \to A$ which is a coderivation with respect to each ∂_i , i.e., we have that

 $\partial_i \circ L = (L \otimes \mathrm{id}_A + \mathrm{id}_A \otimes L) \circ \partial_i.$

In this case, we say that L is a weak grading of (A, μ, ∂) and we call $N := L - \mathrm{id}_A$ the associated number operator.

• graded, if (A, μ, ∂) admits a weak grading $L : A \to A$ for which the number operator N is an A-valued derivation on (A, μ) , i.e.,

 $N \circ \mu = \mu \circ (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N).$

In this case, we call L a grading of (A, μ, ∂) .

Divergence for multivariable GDQ rings

Divergence for multivariable GDQ rings

Definition (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring with gradient $\partial = (\partial_1, \ldots, \partial_n)$ viewed as $\partial : A \to (A \otimes A)^n$. A divergence for (A, μ, ∂) is a linear map

$$\partial^{\star} := (\partial_1^{\star}, \dots, \partial_n^{\star}) : (A \otimes A)^n \to A, \quad \underline{u} = (u_1, \dots, u_n) \mapsto \sum_{j=1}^n \partial_j^{\star}(u_j)$$

such that for $i, j = 1, \ldots, n$

 $\partial_j \circ \partial_i^{\star} = (\partial_i^{\star} \otimes \mathrm{id}_A) \circ (\mathrm{id}_A \otimes \partial_j) + (\mathrm{id}_A \otimes \partial_i^{\star}) \circ (\partial_j \otimes \mathrm{id}_A) + \delta_{i,j} \mathrm{id}_{A \otimes A}.$

Divergence for multivariable GDQ rings

Definition (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring with gradient $\partial = (\partial_1, \ldots, \partial_n)$ viewed as $\partial : A \to (A \otimes A)^n$. A divergence for (A, μ, ∂) is a linear map

$$\partial^{\star} := (\partial_1^{\star}, \dots, \partial_n^{\star}) : (A \otimes A)^n \to A, \quad \underline{u} = (u_1, \dots, u_n) \mapsto \sum_{j=1}^n \partial_j^{\star}(u_j)$$

such that for $i, j = 1, \ldots, n$

 $\partial_j \circ \partial_i^{\star} = (\partial_i^{\star} \otimes \operatorname{id}_A) \circ (\operatorname{id}_A \otimes \partial_j) + (\operatorname{id}_A \otimes \partial_i^{\star}) \circ (\partial_j \otimes \operatorname{id}_A) + \delta_{i,j} \operatorname{id}_{A \otimes A}.$

Example

For the multivariable GDQ ring $(\mathbb{C}\langle\underline{x}\rangle,\mu,\partial)$ with the free gradient ∂ , we get a divergence by

 $\partial_j^\star: \ \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle, \quad u \mapsto u \sharp x_j.$

Tobias Mai (Saarland University)

Theorem (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring with gradient $\partial = (\partial_1, \ldots, \partial_n)$. Suppose that $\partial^* = (\partial_1^*, \ldots, \partial_n^*)$ is a divergence for (A, μ, ∂) . Define

$$N: A \to A, \qquad N := \partial^{\star} \circ \partial = \sum_{j=1}^{n} \partial_{j}^{\star} \circ \partial_{j}$$

and $L := N + id_A$. Then the following statements hold:

Theorem (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring with gradient $\partial = (\partial_1, \ldots, \partial_n)$. Suppose that $\partial^* = (\partial_1^*, \ldots, \partial_n^*)$ is a divergence for (A, μ, ∂) . Define

$$N: A \to A, \qquad N := \partial^{\star} \circ \partial = \sum_{j=1}^{n} \partial_{j}^{\star} \circ \partial_{j}$$

and L := N + id_A. Then the following statements hold:
I is a weak grading on (A, μ, ∂).

Theorem (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring with gradient $\partial = (\partial_1, \dots, \partial_n)$. Suppose that $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ is a divergence for (A, μ, ∂) . Define

$$N: A \to A, \qquad N := \partial^{\star} \circ \partial = \sum_{j=1}^{n} \partial_{j}^{\star} \circ \partial_{j}$$

and $L := N + id_A$. Then the following statements hold:

- L is a weak grading on (A, μ, ∂) .
- 2 If each ∂_i^{\star} is an A-bimodule homomorphism, then L is a grading.

Theorem (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring with gradient $\partial = (\partial_1, \dots, \partial_n)$. Suppose that $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ is a divergence for (A, μ, ∂) . Define

$$N: A \to A, \qquad N := \partial^{\star} \circ \partial = \sum_{j=1}^{n} \partial_{j}^{\star} \circ \partial_{j}$$

and $L := N + id_A$. Then the following statements hold:

- L is a weak grading on (A, μ, ∂) .
- 2 If each ∂_i^{\star} is an A-bimodule homomorphism, then L is a grading.

Example

For the multivariable GDQ ring $(\mathbb{C}\langle \underline{x}\rangle, \mu, \partial)$ endowed with the divergence $\partial^* = (\partial_1^*, \ldots, \partial_n^*)$ defined by $\partial^*(u) = u \sharp x_j$, we get a grading $L = N + \mathrm{id}$ where $N = \partial^* \circ \partial$ satisfies $Nx_{i_1}x_{i_2} \cdots x_{i_k} = k x_{i_1}x_{i_2} \cdots x_{i_k}$.

We show that $L = N + \mathrm{id}_A$ with $N = \partial^* \circ \partial = \sum_{i=1}^n \partial_i^* \circ \partial_i$ is a weak grading, i.e.,

 $\partial_j \circ L = (L \otimes \mathrm{id}_A + \mathrm{id}_A \otimes L) \circ \partial_j \quad \text{for } j = 1, \dots, n.$

We show that $L = N + \mathrm{id}_A$ with $N = \partial^* \circ \partial = \sum_{i=1}^n \partial_i^* \circ \partial_i$ is a weak grading, i.e.,

 $\partial_j \circ L = (L \otimes \mathrm{id}_A + \mathrm{id}_A \otimes L) \circ \partial_j \quad \text{for } j = 1, \dots, n.$

We verify the latter identity as follows:

$$\partial_j \circ N = \sum_{i=1}^n (\partial_j \circ \partial_i^\star) \circ \partial_i$$

We show that $L = N + \mathrm{id}_A$ with $N = \partial^* \circ \partial = \sum_{i=1}^n \partial_i^* \circ \partial_i$ is a weak grading, i.e.,

 $\partial_j \circ L = (L \otimes \mathrm{id}_A + \mathrm{id}_A \otimes L) \circ \partial_j \quad \text{for } j = 1, \dots, n.$

We verify the latter identity as follows:

$$\partial_{j} \circ N = \sum_{i=1}^{n} (\partial_{j} \circ \partial_{i}^{\star}) \circ \partial_{i}$$
$$\stackrel{(1)}{=} \partial_{j} + \sum_{i=1}^{n} ((\partial_{i}^{\star} \otimes \mathrm{id}_{A}) \circ (\mathrm{id}_{A} \otimes \partial_{j}) \circ \partial_{i} + (\mathrm{id}_{A} \otimes \partial_{i}^{\star}) \circ (\partial_{j} \otimes \mathrm{id}_{A}) \circ \partial_{i})$$

where we use that

(1) $\partial_j \circ \partial_i^* = (\partial_i^* \otimes \mathrm{id}_A) \circ (\mathrm{id}_A \otimes \partial_j) + (\mathrm{id}_A \otimes \partial_i^*) \circ (\partial_j \otimes \mathrm{id}_A) + \delta_{i,j} \mathrm{id}_{A \otimes A}$

We show that $L = N + \mathrm{id}_A$ with $N = \partial^* \circ \partial = \sum_{i=1}^n \partial_i^* \circ \partial_i$ is a weak grading, i.e.,

$$\partial_j \circ L = (L \otimes \mathrm{id}_A + \mathrm{id}_A \otimes L) \circ \partial_j \qquad \text{for } j = 1, \dots, n.$$

We verify the latter identity as follows:

$$\partial_{j} \circ N = \sum_{i=1}^{n} (\partial_{j} \circ \partial_{i}^{\star}) \circ \partial_{i}$$

$$\stackrel{(1)}{=} \partial_{j} + \sum_{i=1}^{n} ((\partial_{i}^{\star} \otimes \mathrm{id}_{A}) \circ (\mathrm{id}_{A} \otimes \partial_{j}) \circ \partial_{i} + (\mathrm{id}_{A} \otimes \partial_{i}^{\star}) \circ (\partial_{j} \otimes \mathrm{id}_{A}) \circ \partial_{i})$$

$$\stackrel{(2)}{=} \partial_{j} + \sum_{i=1}^{n} ((\partial_{i}^{\star} \otimes \mathrm{id}_{A}) \circ (\partial_{i} \otimes \mathrm{id}_{A}) \circ \partial_{j} + (\mathrm{id}_{A} \otimes \partial_{i}^{\star}) \circ (\mathrm{id}_{A} \otimes \partial_{i}) \circ \partial_{j})$$

where we use that

(1) $\partial_j \circ \partial_i^* = (\partial_i^* \otimes \mathrm{id}_A) \circ (\mathrm{id}_A \otimes \partial_j) + (\mathrm{id}_A \otimes \partial_i^*) \circ (\partial_j \otimes \mathrm{id}_A) + \delta_{i,j} \mathrm{id}_{A \otimes A}$

(2) $(\mathrm{id}_A \otimes \partial_j) \circ \partial_i = (\partial_i \otimes \mathrm{id}_A) \circ \partial_j$ and $(\partial_j \otimes \mathrm{id}_A) \circ \partial_i = (\mathrm{id}_A \otimes \partial_i) \circ \partial_j$.

We show that $L = N + \mathrm{id}_A$ with $N = \partial^* \circ \partial = \sum_{i=1}^n \partial_i^* \circ \partial_i$ is a weak grading, i.e.,

$$\partial_j \circ L = (L \otimes \mathrm{id}_A + \mathrm{id}_A \otimes L) \circ \partial_j \qquad \text{for } j = 1, \dots, n.$$

We verify the latter identity as follows:

$$\partial_{j} \circ N = \sum_{i=1}^{n} (\partial_{j} \circ \partial_{i}^{\star}) \circ \partial_{i}$$

$$\stackrel{(1)}{=} \partial_{j} + \sum_{i=1}^{n} ((\partial_{i}^{\star} \otimes \mathrm{id}_{A}) \circ (\mathrm{id}_{A} \otimes \partial_{j}) \circ \partial_{i} + (\mathrm{id}_{A} \otimes \partial_{i}^{\star}) \circ (\partial_{j} \otimes \mathrm{id}_{A}) \circ \partial_{i})$$

$$\stackrel{(2)}{=} \partial_{j} + \sum_{i=1}^{n} ((\partial_{i}^{\star} \otimes \mathrm{id}_{A}) \circ (\partial_{i} \otimes \mathrm{id}_{A}) \circ \partial_{j} + (\mathrm{id}_{A} \otimes \partial_{i}^{\star}) \circ (\mathrm{id}_{A} \otimes \partial_{i}) \circ \partial_{j})$$

$$= (N \otimes \mathrm{id}_{A} + \mathrm{id}_{A} \otimes N + \mathrm{id}_{A \otimes A}) \circ \partial_{j},$$

where we use that

(1) $\partial_j \circ \partial_i^{\star} = (\partial_i^{\star} \otimes \mathrm{id}_A) \circ (\mathrm{id}_A \otimes \partial_j) + (\mathrm{id}_A \otimes \partial_i^{\star}) \circ (\partial_j \otimes \mathrm{id}_A) + \delta_{i,j} \mathrm{id}_{A \otimes A}$

(2) $(\mathrm{id}_A \otimes \partial_j) \circ \partial_i = (\partial_i \otimes \mathrm{id}_A) \circ \partial_j$ and $(\partial_j \otimes \mathrm{id}_A) \circ \partial_i = (\mathrm{id}_A \otimes \partial_i) \circ \partial_j$.

Tobias Mai (Saarland University)

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose that the following conditions are satisfied:

- There exists a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ for (A, μ, ∂) ; consider $N = \partial^* \circ \partial$ and the weak grading $L = N + \mathrm{id}_A$.
- $N \otimes \operatorname{id}_A + \operatorname{id}_A \otimes N + \operatorname{id}_{A \otimes A}$ is injective and $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$.

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose that the following conditions are satisfied:

• There exists a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ for (A, μ, ∂) ; consider $N = \partial^* \circ \partial$ and the weak grading $L = N + \mathrm{id}_A$.

• $N \otimes \operatorname{id}_A + \operatorname{id}_A \otimes N + \operatorname{id}_{A \otimes A}$ is injective and $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$.

Then, for any $\underline{u} = (u_1, \dots, u_n) \in (A \otimes A)^n$, the following are equivalent:

Q \underline{u} is a free gradient, i.e., there exists $a \in A$ such that $\partial a = \underline{u}$.

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose that the following conditions are satisfied:

• There exists a divergence $\partial^{\star} = (\partial_1^{\star}, \dots, \partial_n^{\star})$ for (A, μ, ∂) ; consider $N = \partial^{\star} \circ \partial$ and the weak grading $L = N + \mathrm{id}_A$.

• $N \otimes \operatorname{id}_A + \operatorname{id}_A \otimes N + \operatorname{id}_{A \otimes A}$ is injective and $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$.

Then, for any $\underline{u} = (u_1, \dots, u_n) \in (A \otimes A)^n$, the following are equivalent:

- **Q** \underline{u} is a free gradient, i.e., there exists $a \in A$ such that $\partial a = \underline{u}$.
- **2** For i, j = 1, ..., n, we have: $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\partial_j \otimes \mathrm{id}_A)(u_i)$

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose that the following conditions are satisfied:

• There exists a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ for (A, μ, ∂) ; consider $N = \partial^* \circ \partial$ and the weak grading $L = N + \mathrm{id}_A$.

• $N \otimes \operatorname{id}_A + \operatorname{id}_A \otimes N + \operatorname{id}_{A \otimes A}$ is injective and $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$.

Then, for any $\underline{u} = (u_1, \dots, u_n) \in (A \otimes A)^n$, the following are equivalent:

- **Q** \underline{u} is a free gradient, i.e., there exists $a \in A$ such that $\partial a = \underline{u}$.
- **2** For i, j = 1, ..., n, we have: $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\partial_j \otimes \mathrm{id}_A)(u_i)$
- For j = 1, ..., n: $\partial_j (\partial^* \underline{u}) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A}) u_j$

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose that the following conditions are satisfied:

• There exists a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ for (A, μ, ∂) ; consider $N = \partial^* \circ \partial$ and the weak grading $L = N + \mathrm{id}_A$.

• $N \otimes \operatorname{id}_A + \operatorname{id}_A \otimes N + \operatorname{id}_{A \otimes A}$ is injective and $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$.

Then, for any $\underline{u} = (u_1, \dots, u_n) \in (A \otimes A)^n$, the following are equivalent:

- **Q** \underline{u} is a free gradient, i.e., there exists $a \in A$ such that $\partial a = \underline{u}$.
- **2** For i, j = 1, ..., n, we have: $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\partial_j \otimes \mathrm{id}_A)(u_i)$

• For j = 1, ..., n: $\partial_j (\partial^* \underline{u}) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A}) u_j$

If the equivalent conditions are satisfied for \underline{u} , then every solution $a \in A$ of $Na = \partial^* \underline{u}$ is a free antiderivative of \underline{u} , i.e., we have that $\partial a = \underline{u}$.

• If $u_j = \partial_j a$, then by the coassociativity relation

 $(\mathrm{id}_A\otimes\partial_i)(u_j)=(\mathrm{id}_A\otimes\partial_i)(\partial_j a)=(\partial_j\otimes\mathrm{id}_A)(\partial_i a)=(\partial_j\otimes\mathrm{id}_A)(u_i).$

- If $u_j = \partial_j a$, then by the coassociativity relation $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\mathrm{id}_A \otimes \partial_i)(\partial_j a) = (\partial_j \otimes \mathrm{id}_A)(\partial_i a) = (\partial_j \otimes \mathrm{id}_A)(u_i).$
- That $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\partial_j \otimes \mathrm{id}_A)(u_i)$ implies

 $\partial_j (\partial^* u) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A}) u_j$

can be checked like in the previous proof.

• If $u_j = \partial_j a$, then by the coassociativity relation

 $(\mathrm{id}_A\otimes\partial_i)(u_j)=(\mathrm{id}_A\otimes\partial_i)(\partial_j a)=(\partial_j\otimes\mathrm{id}_A)(\partial_i a)=(\partial_j\otimes\mathrm{id}_A)(u_i).$

• That $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\partial_j \otimes \mathrm{id}_A)(u_i)$ implies

 $\partial_j (\partial^* u) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A}) u_j$

can be checked like in the previous proof.

• Since $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$ by assumption, we find an element $a \in A$ such that $Na = \partial^* \underline{u}$.

• If $u_j = \partial_j a$, then by the coassociativity relation

 $(\mathrm{id}_A\otimes\partial_i)(u_j)=(\mathrm{id}_A\otimes\partial_i)(\partial_j a)=(\partial_j\otimes\mathrm{id}_A)(\partial_i a)=(\partial_j\otimes\mathrm{id}_A)(u_i).$

• That $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\partial_j \otimes \mathrm{id}_A)(u_i)$ implies

 $\partial_j (\partial^* u) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A}) u_j$

can be checked like in the previous proof.

• Since $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$ by assumption, we find an element $a \in A$ such that $Na = \partial^* \underline{u}$. Since L is a weak grading, we get

 $(N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A})(\partial_j a)$ = $\partial_j (Na) = \partial_j (\partial^* \underline{u}) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A})u_j.$

• If $u_j = \partial_j a$, then by the coassociativity relation

 $(\mathrm{id}_A\otimes\partial_i)(u_j)=(\mathrm{id}_A\otimes\partial_i)(\partial_j a)=(\partial_j\otimes\mathrm{id}_A)(\partial_i a)=(\partial_j\otimes\mathrm{id}_A)(u_i).$

• That $(\mathrm{id}_A \otimes \partial_i)(u_j) = (\partial_j \otimes \mathrm{id}_A)(u_i)$ implies

 $\partial_j (\partial^* u) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A}) u_j$

can be checked like in the previous proof.

• Since $\operatorname{ran} \partial^* \subseteq \operatorname{ran} N$ by assumption, we find an element $a \in A$ such that $Na = \partial^* \underline{u}$. Since L is a weak grading, we get

 $(N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A})(\partial_j a)$ = $\partial_j (Na) = \partial_j (\partial^* \underline{u}) = (N \otimes \mathrm{id}_A + \mathrm{id}_A \otimes N + \mathrm{id}_{A \otimes A})u_j.$

Since $N \otimes id_A + id_A \otimes N + id_{A \otimes A}$ is injective, we infer $\partial_j a = u_j$.

The cyclic derivatives in multivariable GDQ rings

Definition

The cyclic derivatives associated to ∂ are the linear maps

 $\mathcal{D}_j: A \to A, \qquad \mathcal{D}_j:=\mu \circ \sigma \circ \partial_j \qquad \text{for } j=1,\ldots,n.$

We call $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n) : A \to A^n$ the cyclic gradient.

Definition

The cyclic derivatives associated to ∂ are the linear maps

 $\mathcal{D}_j: A \to A, \qquad \mathcal{D}_j := \mu \circ \sigma \circ \partial_j \qquad \text{for } j = 1, \dots, n.$

We call $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n) : A \to A^n$ the cyclic gradient.

Theorem (M., Speicher, 2019)

$$\sigma \circ \partial_i \circ \mathcal{D}_j = \partial_j \circ \mathcal{D}_i \quad \text{for } i, j = 1, \dots, n.$$

Definition

The cyclic derivatives associated to ∂ are the linear maps

 $\mathcal{D}_j: A \to A, \qquad \mathcal{D}_j:=\mu \circ \sigma \circ \partial_j \qquad \text{for } j=1,\ldots,n.$

We call $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n) : A \to A^n$ the cyclic gradient.

Theorem (M., Speicher, 2019)

$$\sigma \circ \partial_i \circ \mathcal{D}_j = \partial_j \circ \mathcal{D}_i \qquad \text{for } i, j = 1, \dots, n.$$

Theorem (M., Speicher, 2019)

Let $L: A \to A$ be a grading on (A, μ, ∂) and let $N = L - \mathrm{id}_A$ be the associated number operator. Then

$$\mathcal{D}_i \circ N = L \circ \mathcal{D}_i$$
 for $i = 1, \dots, n$.

Tobias Mai (Saarland University)

Free and cyclic gradients

Cyclic divergence

Cyclic divergence

Definition (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring and let ∂^* be a divergence. A cyclic divergence for (A, μ, ∂) (compatible with ∂^*) is a linear map

$$\mathcal{D}^{\star} = (\mathcal{D}_{1}^{\star}, \dots, \mathcal{D}_{n}^{\star}) : A^{n} \to A, \quad \underline{b} = (b_{1}, \dots, b_{n}) \mapsto \sum_{i=1}^{n} \mathcal{D}_{i}^{\star}(b_{i})$$

such that for i, j = 1, ..., n: $\mathcal{D}_j \circ \mathcal{D}_i^\star = \partial_i^\star \circ \sigma \circ \partial_j + \delta_{i=j} \operatorname{id}_A$

Cyclic divergence

Definition (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring and let ∂^* be a divergence. A cyclic divergence for (A, μ, ∂) (compatible with ∂^*) is a linear map

$$\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star}): A^n \to A, \quad \underline{b} = (b_1, \dots, b_n) \mapsto \sum_{i=1}^n \mathcal{D}_i^{\star}(b_i)$$

such that for i, j = 1, ..., n: $\mathcal{D}_j \circ \mathcal{D}_i^\star = \partial_i^\star \circ \sigma \circ \partial_j + \delta_{i=j} \operatorname{id}_A$

Example

If $(\mathbb{C}\langle \underline{x} \rangle, \mu, \partial)$ is endowed with the divergence $\partial_j^\star : \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle$ defined by $\partial_j^\star(u) = u \sharp x_j$, then we get a compatible cyclic divergence by

$$\mathcal{D}_j^\star: \ \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle, \quad b \mapsto x_j b.$$

 $\mathsf{Indeed:} \quad \mathcal{D}_j(\mathcal{D}_i^\star b) = \mathcal{D}_j(x_i b) = (\tilde{\partial}_j b) \sharp x_i + (\tilde{\partial}_j x_i) \sharp b = \partial_i^\star (\tilde{\partial}_j b) + \delta_{i=j} b$

Cyclic divergence

Definition (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring and let ∂^* be a divergence. A cyclic divergence for (A, μ, ∂) (compatible with ∂^*) is a linear map

$$\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star}): A^n \to A, \quad \underline{b} = (b_1, \dots, b_n) \mapsto \sum_{i=1}^n \mathcal{D}_i^{\star}(b_i)$$

such that for i, j = 1, ..., n: $\mathcal{D}_j \circ \mathcal{D}_i^\star = \partial_i^\star \circ \sigma \circ \partial_j + \delta_{i=j} \operatorname{id}_A$

Example

If $(\mathbb{C}\langle \underline{x} \rangle, \mu, \partial)$ is endowed with the divergence $\partial_j^\star : \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle$ defined by $\partial_j^\star(u) = u \sharp x_j$, then we get a compatible cyclic divergence by

$$\mathcal{D}_j^\star : \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle, \quad b \mapsto x_j b = \partial_j^\star (1 \otimes b).$$

Indeed: $\mathcal{D}_j(\mathcal{D}_i^{\star}b) = \mathcal{D}_j(x_ib) = (\tilde{\partial}_j b) \sharp x_i + (\tilde{\partial}_j x_i) \sharp b = \partial_i^{\star}(\tilde{\partial}_j b) + \delta_{i=j}b$

The associated cyclic symmetrization operator

The associated cyclic symmetrization operator

Theorem (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring and let ∂^* be a divergence. To a cyclic divergence $\mathcal{D}^* = (\mathcal{D}_1^*, \dots, \mathcal{D}_n^*)$ compatible with ∂^* , we associate the cyclic symmetrization operator

$$C: A \to A, \qquad C:=\mathcal{D}^{\star} \circ \mathcal{D} = \sum_{i=1}^{n} \mathcal{D}_{i}^{\star} \circ \mathcal{D}_{i}.$$

Then, for $j = 1, \ldots, n$: $\mathcal{D}_j \circ C = L \circ \mathcal{D}_j$

The associated cyclic symmetrization operator

Theorem (M., Speicher, 2019)

Let (A, μ, ∂) be a multivariable GDQ ring and let ∂^* be a divergence. To a cyclic divergence $\mathcal{D}^* = (\mathcal{D}_1^*, \dots, \mathcal{D}_n^*)$ compatible with ∂^* , we associate the cyclic symmetrization operator

$$C: A \to A, \qquad C:=\mathcal{D}^{\star} \circ \mathcal{D} = \sum_{i=1}^{n} \mathcal{D}_{i}^{\star} \circ \mathcal{D}_{i}.$$

Then, for $j = 1, \ldots, n$: $\mathcal{D}_j \circ C = L \circ \mathcal{D}_j$

Example

On $(\mathbb{C}\langle \underline{x} \rangle, \mu, \partial)$, we consider $\partial_j^\star : \mathbb{C}\langle \underline{x} \rangle \otimes \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle, u \mapsto u \sharp x_j$ and $\mathcal{D}_j^\star : \mathbb{C}\langle \underline{x} \rangle \to \mathbb{C}\langle \underline{x} \rangle, b \mapsto x_j b$, then $C = \mathcal{D}^\star \circ \mathcal{D}$ satisfies

$$Cx_{i_1}\cdots x_{i_k} = \sum_{p=1}^k x_{i_{p+1}}\cdots x_{i_k} x_{i_1}\cdots x_{i_p}.$$

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose the following:

- There is a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ consisting of A-bimodule homomorphisms; put $N = \partial^* \circ \partial$ and the grading $L = N + \mathrm{id}_A$.
- There is a cyclic divergence $\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star})$ compatible with ∂^{\star} .
- The grading $L: A \to A$ is injective and it holds $\operatorname{ran} \mathcal{D}^{\star} \subseteq \operatorname{ran} N$.

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose the following:

- There is a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ consisting of A-bimodule homomorphisms; put $N = \partial^* \circ \partial$ and the grading $L = N + \mathrm{id}_A$.
- There is a cyclic divergence $\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star})$ compatible with ∂^{\star} .
- The grading $L: A \to A$ is injective and it holds $\operatorname{ran} \mathcal{D}^{\star} \subseteq \operatorname{ran} N$.

Then, for any $\underline{b} = (b_1, \dots, b_n) \in A^n$, the following are equivalent:

() \underline{b} is a cyclic gradient, i.e., there exists $a \in A$ such that $\mathcal{D}a = \underline{b}$.

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose the following:

- There is a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ consisting of A-bimodule homomorphisms; put $N = \partial^* \circ \partial$ and the grading $L = N + \mathrm{id}_A$.
- There is a cyclic divergence $\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star})$ compatible with ∂^{\star} .
- The grading $L: A \to A$ is injective and it holds $\operatorname{ran} \mathcal{D}^{\star} \subseteq \operatorname{ran} N$.

Then, for any $\underline{b} = (b_1, \dots, b_n) \in A^n$, the following are equivalent:

1 \underline{b} is a cyclic gradient, i.e., there exists $a \in A$ such that $\mathcal{D}a = \underline{b}$. 2 For $i, j = 1, \dots, n$, we have : $\partial_i b_j = \sigma(\partial_j b_i)$

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose the following:

- There is a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ consisting of A-bimodule homomorphisms; put $N = \partial^* \circ \partial$ and the grading $L = N + \mathrm{id}_A$.
- There is a cyclic divergence $\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star})$ compatible with ∂^{\star} .
- The grading $L: A \to A$ is injective and it holds $\operatorname{ran} \mathcal{D}^{\star} \subseteq \operatorname{ran} N$.

Then, for any $\underline{b} = (b_1, \dots, b_n) \in A^n$, the following are equivalent:

b is a cyclic gradient, i.e., there exists a ∈ A such that Da = b. **c** For i, j = 1,...,n, we have : ∂_ib_j = σ(∂_jb_i) **e** For j = 1,...,n, we have: D_j(D*b) = Lb_j.

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose the following:

- There is a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ consisting of A-bimodule homomorphisms; put $N = \partial^* \circ \partial$ and the grading $L = N + \mathrm{id}_A$.
- There is a cyclic divergence $\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star})$ compatible with ∂^{\star} .
- The grading $L: A \to A$ is injective and it holds $\operatorname{ran} \mathcal{D}^{\star} \subseteq \operatorname{ran} N$.

Then, for any $\underline{b} = (b_1, \dots, b_n) \in A^n$, the following are equivalent:

• \underline{b} is a cyclic gradient, i.e., there exists $a \in A$ such that $\mathcal{D}a = \underline{b}$. • For $i, j = 1, \dots, n$, we have : $\partial_i b_j = \sigma(\partial_j b_j)$

• For j = 1, ..., n, we have: $\mathcal{D}_j(\mathcal{D}^*\underline{b}) = Lb_j$.

If the equivalent conditions are satisfied for \underline{b} , then every $a \in A$ solving $Na = \partial^* \underline{u}$ is a cyclic antiderivative of \underline{b} , i.e., we have that $\mathcal{D}a = \underline{b}$.

Theorem (M., Speicher, 2019)

Let (A,μ,∂) be a multivariable GDQ ring. Suppose the following:

- There is a divergence $\partial^* = (\partial_1^*, \dots, \partial_n^*)$ consisting of A-bimodule homomorphisms; put $N = \partial^* \circ \partial$ and the grading $L = N + \mathrm{id}_A$.
- There is a cyclic divergence $\mathcal{D}^{\star} = (\mathcal{D}_1^{\star}, \dots, \mathcal{D}_n^{\star})$ compatible with ∂^{\star} .
- The grading $L: A \to A$ is injective and it holds $\operatorname{ran} \mathcal{D}^{\star} \subseteq \operatorname{ran} N$.

Then, for any $\underline{b} = (b_1, \dots, b_n) \in A^n$, the following are equivalent:

<u>b</u> is a cyclic gradient, i.e., there exists a ∈ A such that Da = <u>b</u>.
 For i, j = 1,...,n, we have : ∂_ib_i = σ(∂_ib_i)

• For j = 1, ..., n, we have: $\mathcal{D}_j(\mathcal{D}^{\star}\underline{b}) = Lb_j$.

If the equivalent conditions are satisfied for \underline{b} , then every $a \in A$ solving $Na = \partial^* \underline{u}$ is a cyclic antiderivative of \underline{b} , i.e., we have that $\mathcal{D}a = \underline{b}$. The same is true for each $a \in A$ solving $Ca = \partial^* \underline{u}$, where $C = \mathcal{D}^* \circ \mathcal{D}$ is the cyclic symmetrization operator.

Tobias Mai (Saarland University)

We consider the linear bases of $\mathbb{C}\langle x \rangle$ given by the Chebyshev polynomials:

first kind : $t_0 = 2$, $t_1 = x$, $xt_k = t_{k+1} + t_{k-1}$ $(k \ge 1)$ second kind : $u_0 = 1$, $u_1 = x$, $xu_k = u_{k+1} + u_{k-1}$ $(k \ge 1)$

We consider the linear bases of $\mathbb{C}\langle x \rangle$ given by the Chebyshev polynomials:

first kind :	$t_0 = 2,$	$t_1 = x,$	$xt_k = t_{k+1} + t_{k-1}$	$(k \ge 1)$
second kind :	$u_0 = 1,$	$u_1 = x,$	$xu_k = u_{k+1} + u_{k-1}$	$(k \ge 1)$

• For $\partial : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle$ and $\mathcal{D} : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$, we obtain

$$\partial u_k = \sum_{p=1}^k u_{p-1} \otimes u_{k-p}$$
 and $\mathcal{D}t_{k+1} = (k+1)u_k.$

We consider the linear bases of $\mathbb{C}\langle x \rangle$ given by the Chebyshev polynomials:

first kind :	$t_0 = 2,$	$t_1 = x,$	$xt_k = t_{k+1} + t_{k-1}$	$(k \ge 1)$
second kind :	$u_0 = 1,$	$u_1 = x,$	$xu_k = u_{k+1} + u_{k-1}$	$(k \ge 1)$

• For $\partial : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle$ and $\mathcal{D} : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$, we obtain

$$\partial u_k = \sum_{p=1}^k u_{p-1} \otimes u_{k-p}$$
 and $\mathcal{D}t_{k+1} = (k+1)u_k.$

• We define $\partial^\star: \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$ and $\mathcal{D}^\star: \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$ by

 $\partial^{\star}(u_k \otimes u_l) := u_{k+l+1}$ and $\mathcal{D}^{\star}u_k = t_{k+1}.$

We consider the linear bases of $\mathbb{C}\langle x \rangle$ given by the Chebyshev polynomials:

first kind :	$t_0 = 2,$	$t_1 = x,$	$xt_k = t_{k+1} + t_{k-1}$	$(k \ge 1)$
second kind :	$u_0 = 1,$	$u_1 = x,$	$xu_k = u_{k+1} + u_{k-1}$	$(k \ge 1)$

• For $\partial : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle$ and $\mathcal{D} : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$, we obtain $\partial u_k = \sum_{p=1}^k u_{p-1} \otimes u_{k-p}$ and $\mathcal{D}t_{k+1} = (k+1)u_k$. • We define $\partial^* : \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$ and $\mathcal{D}^* : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$ by

 $\partial^{\star}(u_k\otimes u_l):=u_{k+l+1}$ and $\mathcal{D}^{\star}u_k=t_{k+1}.$

• Thus, the number operators satisfy $Nu_k = k u_k$ and $Ct_k = k t_k$.

We consider the linear bases of $\mathbb{C}\langle x \rangle$ given by the Chebyshev polynomials:

first kind :	$t_0 = 2,$	$t_1 = x,$	$xt_k = t_{k+1} + t_{k-1}$	$(k \ge 1)$
second kind :	$u_0 = 1,$	$u_1 = x,$	$xu_k = u_{k+1} + u_{k-1}$	$(k \ge 1)$

• For $\partial : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle$ and $\mathcal{D} : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$, we obtain $\partial u_k = \sum_{p=1}^k u_{p-1} \otimes u_{k-p}$ and $\mathcal{D}t_{k+1} = (k+1)u_k$.

• We define $\partial^* : \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$ and $\mathcal{D}^* : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$ by $\partial^*(u_k \otimes u_l) := u_{k+l+1}$ and $\mathcal{D}^*u_k = t_{k+1}$.

• Thus, the number operators satisfy $Nu_k = k u_k$ and $Ct_k = k t_k$.