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Free and cyclic di�erential calculus

Let C〈x〉 = C〈x1, . . . , xn〉 be the algebra of noncommutative polynomials
in the n formal variables x = (x1, . . . , xn); each p ∈ C〈x〉 is of the form

p =
d∑

k=0

∑
1≤i1,...,ik≤n

ai1,...,ikxi1 · · ·xik .

De�nition

The free derivatives are the unique derivations

∂1, . . . , ∂n : C〈x〉 → C〈x〉 ⊗ C〈x〉 satisfying ∂ixj = δi=j1⊗ 1.

The cyclic derivatives are the linear mappings

D1, . . . ,Dn : C〈x〉 → C〈x〉 de�ned by Dj := µ ◦ σ ◦ ∂j ,

where

I σ : C〈x〉 ⊗ C〈x〉 → C〈x〉 ⊗ C〈x〉, p1 ⊗ p2 7→ p2 ⊗ p1 (�ip)

I µ : C〈x〉 ⊗ C〈x〉 → C〈x〉, p1 ⊗ p2 7→ p1p2 (multiplication)
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Free derivatives

∂1, . . . , ∂n : C〈x〉 → C〈x〉 ⊗ C〈x〉 derivations, ∂ixj = δi=j1⊗ 1

∂j : C〈x〉 → C〈x〉 ⊗ C〈x〉 is a derivation in the sense that

∂j(p1p2) = ∂j(p1) · p2 + p1 · ∂j(p2) for all p1, p2 ∈ C〈x〉.

Note that C〈x〉 ⊗ C〈x〉 is a C〈x〉-bimodule with respect to the action

p1 · (q1 ⊗ q2) · p2 := (p1q1)⊗ (q2p2).

Example

Let n = 2 and consider p = x1x2x1x2. Then

∂1p = 1⊗ x2x1x2 + x1x2 ⊗ x2,
∂2p = x1 ⊗ x1x2 + x1x2x1 ⊗ 1.
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Cyclic derivatives

D1, . . . ,Dn : C〈x〉 → C〈x〉 linear, Dj := µ ◦ σ ◦ ∂j

Dj : C〈x〉 → C〈x〉 is not a derivation if n ≥ 2, but satis�es

Dj(p1p2) = ∂̃j(p1)]p2 + ∂̃j(p2)]p1 for all p1, p2 ∈ C〈x〉.

Here, we use the notation ∂̃j := σ ◦ ∂j and the bilinear map

] : (C〈x〉 ⊗ C〈x〉)× C〈x〉 → C〈x〉, (p1 ⊗ p2)]q := p1qp2.

Example

Let n = 2 and consider again p = x1x2x1x2. We already know that

∂1p = 1⊗ x2x1x2 + x1x2⊗ x2 and ∂2p = x1⊗ x1x2 + x1x2x1⊗ 1.

Hence, we get that

D1p = 2x2x1x2 and D2p = 2x1x2x1.
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Why are these natural notions?

For every X = (X1, . . . , Xn) ∈MN (C)n, we have the evaluation
homomorphism

evX : C〈x〉 →MN (C), xi1xi2 · · ·xik 7→ Xi1Xi2 · · ·Xik .

Consequently, every p ∈ C〈x〉 induces matrix functions

p : MN (C)n →MN (C), X 7→ p(X) := evX(p).

At each point X = (X1, . . . , Xn) ∈MN (C)n and for every direction

H = (H1, . . . ,Hn) ∈MN (C)n, we have for the directional derivatives

d

dt
p(X + tH)

∣∣∣
t=0

=
n∑

j=1

(∂jp)(X)]Hj ,

d

dt
trN

(
p(X + tH)

)∣∣∣
t=0

=

n∑
j=1

trN
(
(Djp)(X)Hj

)
.
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Can we recognize free and cyclic gradients?

Question 1

Let q = (q1, . . . , qn) ∈ C〈x〉n be given. When does there exist a p ∈ C〈x〉
such that

q = Dp for Dp := (D1p, . . . ,Dnp) ?

Question 2

Let u = (u1, . . . , un) ∈ (C〈x〉 ⊗ C〈x〉)n be given. When does there exist a
p ∈ C〈x〉 such that

u = ∂p for ∂p := (∂1p, . . . , ∂np) ?

Goal in both cases

Formulate criteria which completely characterize gradients.

Provide some recipe to construct an antiderivative p.
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Number operator and cyclic symmetrization operator

De�nition

The number operator N : C〈x〉 → C〈x〉 is de�ned by

N1 = 0 and Nxi1 · · ·xik = k xi1 · · ·xik .

The cyclic symmetrization operator C : C〈x〉 → C〈x〉 is de�ned by

C1 = 0 and Cxi1 · · ·xik =
k∑

p=1

xip+1 · · ·xikxi1 · · ·xip .

Put C(k)〈x〉 := spanC{xi1 · · ·xik | 1 ≤ i1, . . . , ik ≤ n}. With respect to

C〈x〉 =
⊕
k≥0

C(k)〈x〉 and C〈x〉 ⊗ C〈x〉 =
⊕
k,l≥0

C(k)〈x〉 ⊗ C(l)〈x〉,

both N + id and N ⊗ id + id⊗N + id⊗ id are diagonal and invertible.
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Characterization of cyclic gradients I

Theorem (Voiculescu, 2000)

Let q = (q1, . . . , qn) ∈ C〈x〉n be given. The following are equivalent:

1 q is a cyclic gradient, i.e., there exists p ∈ C〈x〉 such that q = Dp.

2

n∑
j=1

[qj , xj ] = 0.

3

n∑
j=1

xjqj ∈ ranC.

4 For i = 1, . . . , n, we have: Di

( n∑
j=1

xjqj

)
= (N + id)qi

Integrability condition of Schwarz type (M., Speicher, 2019)

5 For i, j = 1, . . . , n, we have: ∂iqj = σ
(
∂jqi

)
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Characterization of cyclic gradients II

Example

Let n = 2 and consider again p = x1x2x1x2. We have checked that

q = (q1, q2) :=
(
2x2x1x2, 2x1x2x1

)
is the cyclic gradient of p.

We verify the Schwarz integrability condition by

∂1q1 = 2x2 ⊗ x2,
∂2q1 = 2 (1⊗ x1x2 + x2x1 ⊗ 1),

∂1q2 = 2 (1⊗ x2x1 + x1x2 ⊗ 1),

∂2q2 = 2x1 ⊗ x1,

from where we see that indeed

∂1q1 = σ(∂1q1), ∂2q2 = σ(∂2q2), and ∂1q2 = σ(∂2q1).
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How to �nd a cyclic antiderivative

Lemma

Suppose that q = (q1, . . . , qn) ∈ C〈x〉n satis�es
∑n

j=1 xjqj ∈ ranC. Then
each p ∈ C〈x〉 which solves the equation

Cp =

n∑
j=1

xjqj

is a cyclic antiderivative of q, i.e., we have that Dp = q.

Example

Let n = 2 and consider again p = x1x2x1x2. For the tuple

q = (q1, q2) =
(
2x2x1x2, 2x1x2x1

)
,

of which we know that it is the cyclic derivative of p, we con�rm that

x1q1 + x2q2 = 2x1x2x1x2 + 2x2x1x2x1 = Cx1x2x1x2 = Cp.
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Characterization of free gradients I

Theorem (M., Speicher, 2019)

Let u = (u1, . . . , un) ∈ (C〈x〉 ⊗ C〈x〉)n be given. Then the following are
equivalent:

1 u is a free gradient, i.e., there exists p ∈ C〈x〉 such that u = ∂p.

2 There exists p ∈ C〈x〉 such that
n∑

j=1

uj][xj , 1⊗ 1] = [p, 1⊗ 1].

3 For i, j = 1, . . . , n, we have: (id⊗∂i)(uj) = (∂j ⊗ id)(ui)

4 For i = 1, . . . , n: ∂i

( n∑
j=1

uj]xj

)
= (N ⊗ id + id⊗N + id⊗ id)(ui)

Every p ∈ C〈x〉 which solves the equation Np =
∑n

j=1 uj]xj is a free
antiderivative of u, i.e., it satis�es u = ∂p.
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3 For i, j = 1, . . . , n, we have: (id⊗∂i)(uj) = (∂j ⊗ id)(ui)

4 For i = 1, . . . , n: ∂i

( n∑
j=1

uj]xj

)
= (N ⊗ id + id⊗N + id⊗ id)(ui)

Every p ∈ C〈x〉 which solves the equation Np =
∑n

j=1 uj]xj is a free
antiderivative of u, i.e., it satis�es u = ∂p.

Tobias Mai (Saarland University) Free and cyclic gradients April 20, 2020 11 / 25



Characterization of free gradients II

Example

Let n = 2 and consider again p = x1x2x1x2. We have already seen that

u = (u1, u2) :=
(
1⊗ x2x1x2 + x1x2 ⊗ x2, x1 ⊗ x1x2 + x1x2x1 ⊗ 1

)
is the free gradient of p.

We verify the Schwarz integrability condition by

(∂1 ⊗ id)u1 = 1⊗ x2 ⊗ x2 = (id⊗∂1)u1
(∂1 ⊗ id)u2 = 1⊗ 1⊗ x1x2 + 1⊗ x2x1 ⊗ 1 + x1x2 ⊗ 1⊗ 1 = (id⊗∂2)u1
(∂2 ⊗ id)u1 = x1 ⊗ 1⊗ x2 = (id⊗∂1)u2
(∂2 ⊗ id)u2 = x1 ⊗ x1 ⊗ 1 = (id⊗∂2)u2

We compute

u1]x1 + u2]x2 = 4x1x2x1x2 = N(x1x2x1x2) = Np.
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Uncovering the underlying mechanism

Questions

How much do the results depend on the particular structure of C〈x〉?
Can the proofs be given by using only the arithmetic properties of free
and cyclic derivatives?

Can one go beyond the polynomial case?

What role do the maps u 7→
∑n

j=1 uj]xj and q 7→
∑n

j=1 xjqj play?

+ Voiculescu's multivariate generalized di�erence quotient rings!

Free probability motivation

Let (M, τ) be a tracial W ∗-probability space such thatM = W ∗(X) for
some X = (X1, . . . , Xn) ∈Mn

sa with Φ∗(X) <∞. It is known that the
conjugate variables ξ = (ξ1, . . . , ξn) of X have the following properties:∑n

j=1[ξj , Xj ] = 0 [Voiculescu, 1999]

∂Xiξj = σ(∂Xjξi) if ξ1, . . . , ξn ∈
⋂n

j=1 dom(∂Xj ) [Dabrowski, 2014]
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Voiculescu's multivariable GDQ rings

De�nition (Voiculescu, 2000)

A multivariable generalized di�erence quotient ring (A,µ, ∂) consists of

a complex (not necessarily unital) algebra A with the induced
multiplication mapping µ : A⊗A→ A, a1 ⊗ a2 7→ a1a2, and

a linear map ∂ = (∂1, . . . , ∂n) : A→ (A⊗A)n, the gradient of A,

such that the following conditions are satis�ed:

1 The mappings ∂1, . . . , ∂n satisfy the joint coassociativity relation

(∂i ⊗ idA) ◦ ∂j = (idA⊗∂j) ◦ ∂i for i, j = 1, . . . , n.

2 Each ∂i is a A⊗A-valued derivation on (A,µ), i.e., we have that

∂i ◦ µ = (µ⊗ idA) ◦ (idA⊗∂i) + (idA⊗µ) ◦ (∂i ⊗ idA).
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Graded and weakly graded multivariable GDQ rings

De�nition (Voiculescu, 2000; M., Speicher, 2019)

A multivariable GDQ ring (A,µ, ∂) is called

weakly graded, if there exits a linear mapping L : A→ A which is a
coderivation with respect to each ∂i, i.e., we have that

∂i ◦ L = (L⊗ idA + idA⊗L) ◦ ∂i.

In this case, we say that L is a weak grading of (A,µ, ∂) and we call
N := L− idA the associated number operator.

graded, if (A,µ, ∂) admits a weak grading L : A→ A for which the
number operator N is an A-valued derivation on (A,µ), i.e.,

N ◦ µ = µ ◦ (N ⊗ idA + idA⊗N).

In this case, we call L a grading of (A,µ, ∂).
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Divergence for multivariable GDQ rings

De�nition (M., Speicher, 2019)

Let (A,µ, ∂) be a multivariable GDQ ring with gradient ∂ = (∂1, . . . , ∂n)
viewed as ∂ : A→ (A⊗A)n. A divergence for (A,µ, ∂) is a linear map

∂? := (∂?1 , . . . , ∂
?
n) : (A⊗A)n → A, u = (u1, . . . , un) 7→

n∑
j=1

∂?j (uj)

such that for i, j = 1, . . . , n

∂j ◦ ∂?i = (∂?i ⊗ idA) ◦ (idA⊗∂j) + (idA⊗∂?i ) ◦ (∂j ⊗ idA) + δi,j idA⊗A.

Example

For the multivariable GDQ ring (C〈x〉, µ, ∂) with the free gradient ∂, we
get a divergence by

∂?j : C〈x〉 ⊗ C〈x〉 → C〈x〉, u 7→ u]xj .
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The induced (weak) grading

Theorem (M., Speicher, 2019)

Let (A,µ, ∂) be a multivariable GDQ ring with gradient ∂ = (∂1, . . . , ∂n).
Suppose that ∂? = (∂?1 , . . . , ∂

?
n) is a divergence for (A,µ, ∂). De�ne

N : A→ A, N := ∂? ◦ ∂ =
n∑

j=1

∂?j ◦ ∂j

and L := N + idA. Then the following statements hold:

1 L is a weak grading on (A,µ, ∂).

2 If each ∂?j is an A-bimodule homomorphism, then L is a grading.

Example

For the multivariable GDQ ring (C〈x〉, µ, ∂) endowed with the divergence
∂? = (∂?1 , . . . , ∂

?
n) de�ned by ∂?(u) = u]xj , we get a grading L = N + id

where N = ∂? ◦ ∂ satis�es Nxi1xi2 · · ·xik = k xi1xi2 · · ·xik .
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Proof.

We show that L = N + idA with N = ∂? ◦ ∂ =
∑n

i=1 ∂
?
i ◦ ∂i is a weak grading, i.e.,

∂j ◦ L = (L⊗ idA + idA ⊗L) ◦ ∂j for j = 1, . . . , n.

We verify the latter identity as follows:

∂j ◦N =

n∑
i=1

(∂j ◦ ∂?
i ) ◦ ∂i

(1)
= ∂j +

n∑
i=1

(
(∂?

i ⊗ idA) ◦ (idA ⊗∂j) ◦ ∂i + (idA ⊗∂?
i ) ◦ (∂j ⊗ idA) ◦ ∂i

)
(2)
= ∂j +

n∑
i=1

(
(∂?

i ⊗ idA) ◦ (∂i ⊗ idA) ◦ ∂j + (idA ⊗∂?
i ) ◦ (idA ⊗∂i) ◦ ∂j

)
= (N ⊗ idA + idA ⊗N + idA⊗A) ◦ ∂j ,

where we use that

(1) ∂j ◦ ∂?
i = (∂?

i ⊗ idA) ◦ (idA ⊗∂j) + (idA ⊗∂?
i ) ◦ (∂j ⊗ idA) + δi,j idA⊗A

(2) (idA ⊗∂j) ◦ ∂i = (∂i ⊗ idA) ◦ ∂j and (∂j ⊗ idA) ◦ ∂i = (idA ⊗∂i) ◦ ∂j .
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Characterization of free gradients

Theorem (M., Speicher, 2019)

Let (A,µ, ∂) be a multivariable GDQ ring. Suppose that the following
conditions are satis�ed:

There exists a divergence ∂? = (∂?1 , . . . , ∂
?
n) for (A,µ, ∂); consider

N = ∂? ◦ ∂ and the weak grading L = N + idA.

N ⊗ idA + idA⊗N + idA⊗A is injective and ran ∂? ⊆ ranN .

Then, for any u = (u1, . . . , un) ∈ (A⊗A)n, the following are equivalent:

1 u is a free gradient, i.e., there exists a ∈ A such that ∂a = u.

2 For i, j = 1, . . . , n, we have: (idA⊗∂i)(uj) = (∂j ⊗ idA)(ui)

3 For j = 1, . . . , n: ∂j
(
∂?u

)
= (N ⊗ idA + idA⊗N + idA⊗A)uj

If the equivalent conditions are satis�ed for u, then every solution a ∈ A of
Na = ∂?u is a free antiderivative of u, i.e., we have that ∂a = u.
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Proof.

If uj = ∂ja, then by the coassociativity relation

(idA⊗∂i)(uj) = (idA⊗∂i)(∂ja) = (∂j ⊗ idA)(∂ia) = (∂j ⊗ idA)(ui).

That (idA⊗∂i)(uj) = (∂j ⊗ idA)(ui) implies

∂j
(
∂?u

)
= (N ⊗ idA + idA⊗N + idA⊗A)uj

can be checked like in the previous proof.

Since ran ∂? ⊆ ranN by assumption, we �nd an element a ∈ A such
that Na = ∂?u.

Since L is a weak grading, we get

(N ⊗ idA + idA⊗N + idA⊗A)(∂ja)

= ∂j(Na) = ∂j(∂
?u) = (N ⊗ idA + idA⊗N + idA⊗A)uj .

Since N ⊗ idA + idA⊗N + idA⊗A is injective, we infer ∂ja = uj .
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The cyclic derivatives in multivariable GDQ rings

Let (A,µ, ∂) be a multivariable GDQ ring with gradient ∂ = (∂1, . . . , ∂n).

De�nition

The cyclic derivatives associated to ∂ are the linear maps

Dj : A→ A, Dj := µ ◦ σ ◦ ∂j for j = 1, . . . , n.

We call D = (D1, . . . ,Dn) : A→ An the cyclic gradient.

Theorem (M., Speicher, 2019)

σ ◦ ∂i ◦ Dj = ∂j ◦ Di for i, j = 1, . . . , n.

Theorem (M., Speicher, 2019)

Let L : A→ A be a grading on (A,µ, ∂) and let N = L− idA be the
associated number operator. Then

Di ◦N = L ◦ Di for i = 1, . . . , n.
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Cyclic divergence

De�nition (M., Speicher, 2019)

Let (A,µ, ∂) be a multivariable GDQ ring and let ∂? be a divergence. A
cyclic divergence for (A,µ, ∂) (compatible with ∂?) is a linear map

D? = (D?
1, . . . ,D?

n) : An → A, b = (b1, . . . , bn) 7→
n∑

i=1

D?
i (bi)

such that for i, j = 1, . . . , n: Dj ◦ D?
i = ∂?i ◦ σ ◦ ∂j + δi=j idA

Example

If (C〈x〉, µ, ∂) is endowed with the divergence ∂?j : C〈x〉 ⊗ C〈x〉 → C〈x〉
de�ned by ∂?j (u) = u]xj , then we get a compatible cyclic divergence by

D?
j : C〈x〉 → C〈x〉, b 7→ xjb.

= ∂?j (1⊗ b)

Indeed: Dj(D?
i b) = Dj(xib) = (∂̃jb)]xi + (∂̃jxi)]b = ∂?i (∂̃jb) + δi=jb
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The associated cyclic symmetrization operator

Theorem (M., Speicher, 2019)

Let (A,µ, ∂) be a multivariable GDQ ring and let ∂? be a divergence. To a
cyclic divergence D? = (D?

1, . . . ,D?
n) compatible with ∂?, we associate the

cyclic symmetrization operator

C : A→ A, C := D? ◦ D =
n∑

i=1

D?
i ◦ Di.

Then, for j = 1, . . . , n: Dj ◦ C = L ◦ Dj

Example

On (C〈x〉, µ, ∂), we consider ∂?j : C〈x〉 ⊗ C〈x〉 → C〈x〉, u 7→ u]xj and
D?

j : C〈x〉 → C〈x〉, b 7→ xjb, then C = D? ◦ D satis�es

Cxi1 · · ·xik =

k∑
p=1

xip+1 · · ·xikxi1 · · ·xip .
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Characterization of cyclic gradients

Theorem (M., Speicher, 2019)

Let (A,µ, ∂) be a multivariable GDQ ring. Suppose the following:

There is a divergence ∂? = (∂?1 , . . . , ∂
?
n) consisting of A-bimodule

homomorphisms; put N = ∂? ◦ ∂ and the grading L = N + idA.

There is a cyclic divergence D? = (D?
1, . . . ,D?

n) compatible with ∂?.

The grading L : A→ A is injective and it holds ranD? ⊆ ranN .

Then, for any b = (b1, . . . , bn) ∈ An, the following are equivalent:

1 b is a cyclic gradient, i.e., there exists a ∈ A such that Da = b.

2 For i, j = 1, . . . , n, we have : ∂ibj = σ
(
∂jbi

)
3 For j = 1, . . . , n, we have: Dj

(
D?b

)
= Lbj .

If the equivalent conditions are satis�ed for b, then every a ∈ A solving
Na = ∂?u is a cyclic antiderivative of b, i.e., we have that Da = b.
The same is true for each a ∈ A solving Ca = ∂?u, where C = D? ◦ D is
the cyclic symmetrization operator.
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Example: Chebyshev polynomials (n = 1)

We consider the linear bases of C〈x〉 given by the Chebyshev polynomials:

�rst kind : t0 = 2, t1 = x, xtk = tk+1 + tk−1 (k ≥ 1)

second kind : u0 = 1, u1 = x, xuk = uk+1 + uk−1 (k ≥ 1)

For ∂ : C〈x〉 → C〈x〉 ⊗ C〈x〉 and D : C〈x〉 → C〈x〉, we obtain

∂uk =
k∑

p=1

up−1 ⊗ uk−p and Dtk+1 = (k + 1)uk.

We de�ne ∂? : C〈x〉 ⊗ C〈x〉 → C〈x〉 and D? : C〈x〉 → C〈x〉 by

∂?(uk ⊗ ul) := uk+l+1 and D?uk = tk+1.

Thus, the number operators satisfy Nuk = k uk and Ctk = k tk.

Thank you!
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