Regularity properties of limiting eigenvalue distributions by means of free probability theory

Tobias Mai

Saarland University

Workshop "Sums & Products of Random Matrices" ZiF Bielefeld – August 30, 2018

Supported by the ERC Advanced Grant "Non-commutative distributions in free probability"

Random matrices: the general frame

Random matrices: the general frame

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

 $\mathfrak{A}_N:=M_N(L^{\infty-}(\Omega,\mathbb{P})),\quad\text{where}\quad L^{\infty-}(\Omega,\mathbb{P}):=\bigcap_{1\leq p<\infty}L^p(\Omega,\mathbb{P}),$

are called random matrices (of size $N \times N$).

Random matrices: the general frame

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

 $\mathfrak{A}_N:=M_N(L^{\infty-}(\Omega,\mathbb{P})),\quad\text{where}\quad L^{\infty-}(\Omega,\mathbb{P}):=\bigcap_{1\leq p<\infty}L^p(\Omega,\mathbb{P}),$

are called random matrices (of size $N \times N$).

Remark

Each $X \in \mathfrak{A}_N$ is an $M_N(\mathbb{C})$ -valued random variable $X : \Omega \to M_N(\mathbb{C})$ and thus induces a Borel probability measure Λ on $M_N(\mathbb{C})$ (or on $M_N(\mathbb{C})_{sa}$, in case that X is selfadjoint) as the push-forward

 $\Lambda := X_*(\mathbb{P}).$

Thus, random matrices of size $N \times N$ can alternatively be regarded as elements in a classical probability space $(M_N(\mathbb{C}), \Lambda)$ (or $(M_N(\mathbb{C})_{sa}, \Lambda)$).

Random matrices: GUE's

Random matrices: GUE's

Definition (Gaussian random matrix)

A standard Gaussian random matrix (of size $N \times N$) is a selfadjoint random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathfrak{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|X_{k,l}|^2] = N^{-1} \quad \text{for } 1 \le k \le l \le N.$$

Random matrices: GUE's

Definition (Gaussian random matrix)

A standard Gaussian random matrix (of size $N \times N$) is a selfadjoint random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathfrak{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|X_{k,l}|^2] = N^{-1} \quad \text{for } 1 \leq k \leq l \leq N.$$

A standard Gaussian random matrix follows the law of the GUE, which is the probability measure Λ_N on $M_N(\mathbb{C})_{sa} \cong \mathbb{R}^{N^2}$ that is determined by

$$d\Lambda_N(X) := rac{1}{Z_N} e^{-rac{N}{2} \operatorname{Tr}(X^2)} dX$$
 with $Z_N := 2^{N/2} \left(rac{\pi}{N}
ight)^{N^2/2}$

and $dX := \prod_{k=1}^N dX_{k,k} \prod_{1 \le k < l \le N} d\operatorname{Re}(X_{k,l}) d\operatorname{Im}(X_{k,l}).$

Consider a random matrix X of size $N \times N$.

Consider a random matrix X of size $N \times N$.

Definition

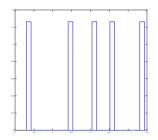
$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

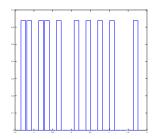


Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

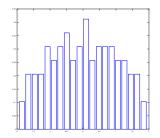


Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

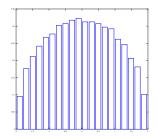


Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$



Gaussian random matrices

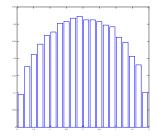
Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by



Gaussian random matrices

Consider a random matrix X of size $N \times N$.

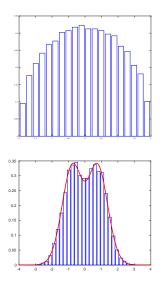
Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by



Gaussian random matrices

Consider a random matrix X of size $N \times N$.

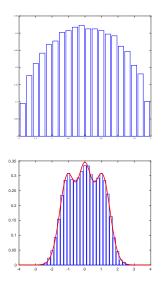
Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by



Gaussian random matrices

Consider a random matrix X of size $N \times N$.

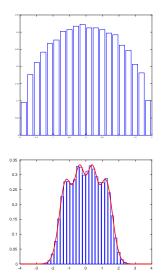
Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by



Gaussian random matrices

Consider a random matrix X of size $N \times N$.

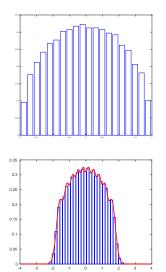
Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by



Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

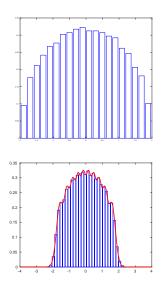
$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

 $\overline{\mu}_X := \mathbb{E}[\mu_X].$

Gaussian random matrices → Wigner's semicircle theorem



For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ be given. Further, take a noncommutative polynomial or rational function f. We combined

- the analytic subordination machinery of operator-valued free probability theory with
- algebraic linearization techniques
- and the hermitization method

in order to compute the (expected) limiting eigenvalue distribution of

 $Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$

For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ be given. Further, take a noncommutative polynomial or rational function f. We combined

- the analytic subordination machinery of operator-valued free probability theory with
- algebraic linearization techniques
- and the hermitization method

in order to compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

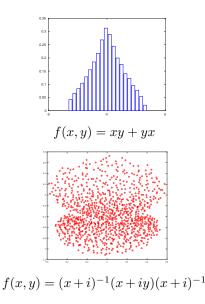


For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ be given. Further, take a noncommutative polynomial or rational function f. We combined

- the analytic subordination machinery of operator-valued free probability theory with
- algebraic linearization techniques
- and the hermitization method

in order to compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

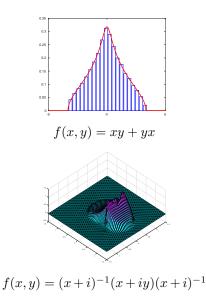


For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ be given. Further, take a noncommutative polynomial or rational function f. We combined

- the analytic subordination machinery of operator-valued free probability theory with
- algebraic linearization techniques
- and the hermitization method

in order to compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$



• A noncommutative polynomial is an expression of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in (formal) noncommuting indeterminates x_1, \ldots, x_n ; the (unital) complex *-algebra that consists of all noncommutative polynomials is denoted by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

• A noncommutative polynomial is an expression of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

- in (formal) noncommuting indeterminates x_1, \ldots, x_n ; the (unital) complex *-algebra that consists of all noncommutative polynomials is denoted by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.
- Elements in $\mathbb{C}\langle x_1, \ldots, x_n \rangle$, which is the *universal field of fractions* for $\mathbb{C}\langle x_1, \ldots, x_n \rangle$, are called noncommutative rational functions.

• A noncommutative polynomial is an expression of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

- in (formal) noncommuting indeterminates x_1, \ldots, x_n ; the (unital) complex *-algebra that consists of all noncommutative polynomials is denoted by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.
- Elements in $\mathbb{C}\langle x_1, \ldots, x_n \rangle$, which is the *universal field of fractions* for $\mathbb{C}\langle x_1, \ldots, x_n \rangle$, are called noncommutative rational functions.

Fact

A matrix $Q \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ is invertible in $M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ if and only if it is full, i.e., if there is no $1 \leq k < N$ so that Q can be written in the form $Q = R_1 R_2$ for some rectangular matrices

 $R_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ and $R_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$

Otherwise, we denote by rank(Q) the minimal k with this property.

 $W^{\ast}\mbox{-}{\rm probability}$ spaces and analytic distributions

 $W^{\ast}\mbox{-}{\rm probability}$ spaces and analytic distributions

Definition

A (tracial) W^* -probability space (\mathcal{M}, τ) consists of

- ullet a von Neumann algebra $\mathcal M$ and
- a faithful normal tracial state $\tau : \mathcal{M} \to \mathbb{C}$.

 W^* -probability spaces and analytic distributions

Definition

A (tracial) W^* -probability space (\mathcal{M}, τ) consists of

ullet a von Neumann algebra ${\mathcal M}$ and

• a faithful normal tracial state $\tau: \mathcal{M} \to \mathbb{C}$.

Definition ("analytic distribution")

Let (\mathcal{M}, τ) be a W^* -probability space. The (analytic) distribution of $X = X^* \in \mathcal{M}$ is the unique Borel probability measure μ_X on \mathbb{R} that satisfies

$$\phi(X^k) = \int_{\mathbb{R}} t^k \, d\mu_X(t) \qquad \text{for all } k = 0, 1, 2, \dots$$

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991)) For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \mathbb{E}[\operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)}))] = \tau(P(S_1, \dots, S_n))$

for freely independent semicircular elements S_1, \ldots, S_n in some W^* -probability space (\mathcal{M}, τ) .

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000)) For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N\to\infty} \operatorname{tr}_N(P(X_1^{(N)},\ldots,X_n^{(N)})) = \tau(P(S_1,\ldots,S_n)) \quad \text{almost surely}$

for freely independent semicircular elements S_1, \ldots, S_n in some W^* -probability space (\mathcal{M}, τ) .

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000)) For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N\to\infty} \operatorname{tr}_N(P(X_1^{(N)},\ldots,X_n^{(N)})) = \tau(P(S_1,\ldots,S_n)) \quad \text{almost surely}$

for freely independent semicircular elements S_1, \ldots, S_n in some W^* -probability space (\mathcal{M}, τ) .

This means: Asymptotic freeness relates

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(S_1, \ldots, S_n)$ for freely independent semicircular elements S_1, \ldots, S_n .

What will we talk about today?

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

• $X_1^{(N)}, \ldots, X_n^{(N)}$, independent standard Gaussian random matrices • f, nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Regularity Questions

• But how nice are they actually?

• $X_1^{(N)}, \ldots, X_n^{(N)}$, independent standard Gaussian random matrices • f, nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Regularity Questions

• But how nice are they actually? In fact, very nice!

• $X_1^{(N)}, \ldots, X_n^{(N)}$, independent standard Gaussian random matrices • f, nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Regularity Questions

But how nice are they actually? In fact, very nice!
 Image: Shlyakhtenko, Skoufranis, 2015]

• $X_1^{(N)}, \ldots, X_n^{(N)}$, independent standard Gaussian random matrices • f, nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Regularity Questions

- But how nice are they actually? In fact, very nice!
 Image: Shlyakhtenko, Skoufranis, 2015]
- What can we say for other random matrix models?

• $X_1^{(N)}, \ldots, X_n^{(N)}$, independent standard Gaussian random matrices • f, nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Regularity Questions

But how nice are they actually? In fact, very nice!
 Image: Shlyakhtenko, Skoufranis, 2015]

• What can we say for other random matrix models?

polynomials: [M., Speicher, Weber, 2014], [Charlesworth, Shlyakhtenko, 2016], [M., Speicher, Weber, 2017]

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Regularity Questions

But how nice are they actually? In fact, very nice!
 Image: Shlyakhtenko, Skoufranis, 2015]

• What can we say for other random matrix models?

 polynomials: [M., Speicher, Weber, 2014], [Charlesworth, Shlyakhtenko, 2016], [M., Speicher, Weber, 2017]
 rational functions: [M., Speicher, Yin, 2018]

Reminder

ullet A standard Gaussian random matrix $X^{(N)}$ of size N imes N follows

$$d\Lambda_N(X) = rac{1}{Z_N} e^{-rac{N}{2}\operatorname{Tr}(X^2)}\,dX$$
 on $M_N(\mathbb{C})_{\mathrm{sa}}.$

Reminder

ullet A standard Gaussian random matrix $X^{(N)}$ of size N imes N follows

$$d\Lambda_N(X) = \frac{1}{Z_N} e^{-\frac{N}{2}\operatorname{Tr}(X^2)} dX \quad \text{on } M_N(\mathbb{C})_{\operatorname{sa}}$$

• Independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ of size $N\times N$ follow the law

$$d\Lambda_N^n(X) = \frac{1}{Z_N^n} e^{-\frac{N}{2} \operatorname{Tr}(X_1^2 + \dots + X_n^2)} \, dX_1 \, \dots \, dX_n \qquad \text{on } (M_N(\mathbb{C})_{\operatorname{sa}})^n.$$

Reminder

ullet A standard Gaussian random matrix $X^{(N)}$ of size N imes N follows

$$d\Lambda_N(X) = \frac{1}{Z_N} e^{-\frac{N}{2}\operatorname{Tr}(X^2)} dX \quad \text{on } M_N(\mathbb{C})_{\operatorname{sa}}$$

• Independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ of size $N\times N$ follow the law

$$d\Lambda_N^n(X) = \frac{1}{Z_N^n} e^{-\frac{N}{2} \operatorname{Tr}(X_1^2 + \dots + X_n^2)} \, dX_1 \, \dots \, dX_n \qquad \text{on } (M_N(\mathbb{C})_{\operatorname{sa}})^n.$$

 \rightsquigarrow replace $rac{1}{2}\sum_{j=1}^n X_j^2$ by another selfadjoint nc polynomial $V(X_1,\ldots,X_n)$

Reminder

ullet A standard Gaussian random matrix $X^{(N)}$ of size N imes N follows

$$d\Lambda_N(X) = \frac{1}{Z_N} e^{-\frac{N}{2}\operatorname{Tr}(X^2)} \, dX \qquad \text{on } M_N(\mathbb{C})_{\operatorname{sa}}$$

• Independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ of size $N\times N$ follow the law

$$d\Lambda_N^n(X) = \frac{1}{Z_N^n} e^{-\frac{N}{2} \operatorname{Tr}(X_1^2 + \dots + X_n^2)} dX_1 \dots dX_n \quad \text{on } (M_N(\mathbb{C})_{\operatorname{sa}})^n.$$

 \rightsquigarrow replace $\frac{1}{2} \sum_{j=1}^{n} X_j^2$ by another selfadjoint nc polynomial $V(X_1, \dots, X_n)$ Definition (Gibbs laws)

$$d\Lambda_N^V(X_1,\ldots,X_n) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1,\ldots,X_n))} \, dX_1 \, \ldots \, dX_n$$

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ with law Λ_N^V . Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N\to\infty} \operatorname{tr}_N(P(X_1^{(N)},\ldots,X_n^{(N)})) = \tau(P(X_1,\ldots,X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation, i.e.

 $(\tau \otimes \tau) \big((\partial_j P)(X_1, \dots, X_n) \big) = \tau \big((D_j V)(X_1, \dots, X_n) P(X_1, \dots, X_n) \big)$

for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ and for every $j = 1, \ldots, n$.

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ with law Λ_N^V . Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \tau(P(X_1, \dots, X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation, i.e.

 $(\tau \otimes \tau) ((\partial_j P)(X_1, \ldots, X_n)) = \tau ((D_j V)(X_1, \ldots, X_n) P(X_1, \ldots, X_n))$

for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ and for every $j = 1, \ldots, n$.

This means: We have a relation between

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(X_1, \ldots, X_n)$ for "regular" X_1, \ldots, X_n .

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ with law Λ_N^V . Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \tau(P(X_1, \dots, X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation, i.e.

 $(\tau \otimes \tau) ((\partial_j P)(X_1, \ldots, X_n)) = \tau ((D_j V)(X_1, \ldots, X_n) P(X_1, \ldots, X_n))$

for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ and for every $j = 1, \ldots, n$.

This means: We have a relation between

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(X_1, \ldots, X_n)$ for "regular" X_1, \ldots, X_n .

Noncommutative and cyclic derivatives

Noncommutative and cyclic derivatives

Definition

(i) The noncommutative derivatives are the linear mappings

$$\partial_1, \ldots, \partial_n : \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle \otimes \mathbb{C}\langle x_1, \ldots, x_n \rangle$$

which are uniquely determined by the two conditions

 $\begin{array}{l} \partial_j(P_1P_2) = (\partial_jP_1) \cdot P_2 + P_1 \cdot (\partial_jP_2) \text{ for all } P_1, P_2 \in \mathbb{C}\langle z_1, \dots, z_n \rangle, \\ \partial_j x_i = \delta_{i,j} 1 \otimes 1 \text{ for } i, j = 1, \dots, n. \end{array}$

Noncommutative and cyclic derivatives

Definition

 $({\sf i})$ The noncommutative derivatives are the linear mappings

 $\partial_1,\ldots,\partial_n: \mathbb{C}\langle x_1,\ldots,x_n\rangle \to \mathbb{C}\langle x_1,\ldots,x_n\rangle \otimes \mathbb{C}\langle x_1,\ldots,x_n\rangle$

which are uniquely determined by the two conditions

 $\begin{array}{l} \partial_j(P_1P_2) = (\partial_jP_1) \cdot P_2 + P_1 \cdot (\partial_jP_2) \text{ for all } P_1, P_2 \in \mathbb{C}\langle z_1, \dots, z_n \rangle, \\ \partial_j x_i = \delta_{i,j} 1 \otimes 1 \text{ for } i, j = 1, \dots, n. \end{array}$

(ii) The cyclic derivatives are the linear mappings

$$D_1,\ldots,D_n: \mathbb{C}\langle x_1,\ldots,x_n\rangle \to \mathbb{C}\langle x_1,\ldots,x_n\rangle$$

that are defined by $D_j := \tilde{m} \circ \partial_j$, where

$$\tilde{m}: \mathbb{C}\langle x_1,\ldots,x_n \rangle \to \mathbb{C}\langle x_1,\ldots,x_n \rangle \otimes \mathbb{C}\langle x_1,\ldots,x_n \rangle$$

denotes the flipped multiplication defined as $\tilde{m}(P_1 \otimes P_2) := P_2 P_1$.

Tobias Mai (Saarland University)

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Definition (Voiculescu (1998); M., Speicher, Weber (2014))

If $\xi_1,\ldots,\xi_n\in L^2(X_1,\ldots,X_n; au)$ are such that for all $P\in\mathbb{C}\langle z_1,\ldots,z_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Definition (Voiculescu (1998); M., Speicher, Weber (2014))

If $\xi_1,\ldots,\xi_n\in L^2(X_1,\ldots,X_n; au)$ are such that for all $P\in\mathbb{C}\langle z_1,\ldots,z_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Definition (Voiculescu (1998); M., Speicher, Weber (2014))

If $\xi_1,\ldots,\xi_n\in L^2(X_1,\ldots,X_n; au)$ are such that for all $P\in\mathbb{C}\langle z_1,\ldots,z_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Definition (Voiculescu (1998))

The (non-microstates) free Fisher information is defined by

$$\Phi^*(X_1,\ldots,X_n) := \begin{cases} \sum_{j=1}^n \|\xi_j\|_2^2, & \text{if a conjugate system } (\xi_1,\ldots,\xi_n) \\ \text{for } (X_1,\ldots,X_n) \text{ exists} \\ \infty, & \text{otherwise} \end{cases}$$

Tobias Mai (Saarland University)

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2 + nt} \le \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2+nt} \le \Phi^*(X_1+\sqrt{t}S_1,\ldots,X_n+\sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Definition

 $\delta^*(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^*(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2+nt} \le \Phi^*(X_1+\sqrt{t}S_1,\ldots,X_n+\sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Definition

$$\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2+nt} \le \Phi^*(X_1+\sqrt{t}S_1,\ldots,X_n+\sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Definition

$$\delta^*(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^*(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

Philosophy If $\delta^{\star}(X_1, \dots, X_n) = n$, then (X_1, \dots, X_n) has no atomic part.

Suppose that $\delta^{\star}(X_1, \ldots, X_n) = n$.

Suppose that $\delta^{\star}(X_1, \ldots, X_n) = n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{P(X_1, \ldots, X_n)}$ has no atoms.

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17) Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{P(X_1,...,X_n)}$ has no atoms. Theorem (MSY18) Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for $\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ has atoms precisely at the points in the set $\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda \mathbf{1}_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \}$ with size $\mu_{\mathbf{Y}}(\{\lambda\}) = 1 - \frac{1}{N} \operatorname{rank}(\mathbf{P} - \lambda \mathbf{1}_N)$.

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{P(X_1, \ldots, X_n)}$ has no atoms.

free analysis

Theorem (MSY18)

Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for

$$\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$$

has atoms precisely at the points in the set

 $\left\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda \mathbf{1}_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \right\}$

with size $\mu_{\mathbf{Y}}(\{\lambda\}) = 1 - \frac{1}{N} \operatorname{rank}(\mathbf{P} - \lambda \mathbf{1}_N)$.

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{P(X_1,\ldots,X_n)}$ has no atoms.

free analysis

Theorem (MSY18)

Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for

$$\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$$

Theorem (MSY18)

Let $r \in \mathbb{C} \not < x_1, \ldots, x_n \not>$ be

selfadjoint and non-constant.

Then $\mu_{r(X_1,...,X_n)}$ has no atoms.

has atoms precisely at the points in the set

 $\left\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda \mathbf{1}_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \right\}$

with size $\mu_{\mathbf{Y}}(\{\lambda\}) = 1 - \frac{1}{N} \operatorname{rank}(\mathbf{P} - \lambda \mathbf{1}_N).$

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{P(X_1,\ldots,X_n)}$ has no atoms.

free analysis

Theorem (MSY18)

Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for

 $\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$

Theorem (MSY18)

Let $r \in \mathbb{C} \not < x_1, \ldots, x_n \not>$ be

selfadjoint and non-constant.

Then $\mu_{r(X_1,...,X_n)}$ has no atoms.

has atoms precisely at the points in the set

 $\left\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda \mathbf{1}_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \right\}$

with size $\mu_{\mathbf{Y}}(\{\lambda\}) = 1 - \frac{1}{N} \operatorname{rank}(\mathbf{P} - \lambda \mathbf{1}_N).$

Atiyah property

Matrix-valued elements – an example

Tobias Mai (Saarland University)

Matrix-valued elements - an example

For standard Gaussian random matrices $X_1^{(N)}, X_2^{(N)}, X_3^{(N)}$ consider

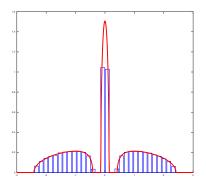
$$\mathbf{X}^{(N)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_1^{(N)} + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} X_2^{(N)} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{10} & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix} X_3^{(N)}$$

Matrix-valued elements - an example

For standard Gaussian random matrices $X_1^{(N)}, X_2^{(N)}, X_3^{(N)}$ consider

$$\mathbf{X}^{(N)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_1^{(N)} + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} X_2^{(N)} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{10} & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix} X_3^{(N)}$$

N=1000, i.e., $\mathbf{X}^{(N)}$ of size 3000×3000 .



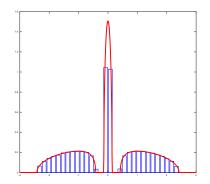
Matrix-valued elements - an example

For standard Gaussian random matrices $X_1^{(N)}, X_2^{(N)}, X_3^{(N)}$ consider

$$\mathbf{X}^{(N)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_1^{(N)} + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} X_2^{(N)} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{10} & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix} X_3^{(N)}$$

N=1000, i.e., $\mathbf{X}^{(N)}$ of size 3000 imes 3000.

[Ajanki, Erdös, Krüger (2016)] [Alt, Erdös, Krüger (2018)]



Hölder continuity

Hölder continuity Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Hölder continuity Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Theorem (Banna, M. (2018)) Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint with degree $d \ge 1$ and consider

 $Y := P(X_1, \ldots, X_n).$

Then there exists some constant C > 0 (depending on P and X_1, \ldots, X_n) such that the cumulative distribution function \mathcal{F}_Y of Y, which is defined as $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$, satisfies

 $|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{2d+2-5}} \quad \text{for all } s, t \in \mathbb{R}.$

Hölder continuity Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Theorem (Banna, M. (2018)) Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint with degree $d \ge 1$ and consider

 $Y := P(X_1, \ldots, X_n).$

Then there exists some constant C > 0 (depending on P and X_1, \ldots, X_n) such that the cumulative distribution function \mathcal{F}_Y of Y, which is defined as $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$, satisfies

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{2^{d+2}-5}} \qquad \text{for all } s, t \in \mathbb{R}$$

In fact, for every $R > \max_{i=1,...,n} \|X_i\|$, we can take

$$C = \prod_{k=1}^{d-1} \left(\frac{d!}{(d-k)!} \right)^{\frac{2^k}{2^{d+2}-5}} \rho_R(P)^{-\frac{2^d}{2^{d+2}-5}} \|P\|_R^{-\frac{2}{2^{d+2}-5}} \left(8R\Phi^*(X)^{1/2} \right)^{\frac{2(2^d-1)}{2^{d+2}-5}}.$$

Hölder continuity – consequences | Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$. Hölder continuity – consequences | Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Corollary (Banna, M. (2018)) Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint with degree $d \ge 1$; consider

 $Y := P(X_1, \ldots, X_n).$

Then, the logarithmic energy (and thus also the free entropy $\chi^*(Y)$)

$$I(\mu_Y) := \int_{\mathbb{R}} \int_{\mathbb{R}} \log \frac{1}{|s-t|} \, d\mu_Y(s) \, d\mu_Y(t)$$

is finite; in fact, there is an explicit bound in terms of the input data.

Hölder continuity – consequences | Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Corollary (Banna, M. (2018)) Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint with degree $d \ge 1$; consider

 $Y := P(X_1, \ldots, X_n).$

Then, the logarithmic energy (and thus also the free entropy $\chi^*(Y)$)

$$I(\mu_Y) := \int_{\mathbb{R}} \int_{\mathbb{R}} \log \frac{1}{|s-t|} \, d\mu_Y(s) \, d\mu_Y(t)$$

is finite; in fact, there is an explicit bound in terms of the input data.

Remark

This is a first step towards a conjecture of Charlesworth and Shlyakhtenko saying that this should hold under the weaker condition

$$\chi^*(X_1,\ldots,X_n) > -\infty.$$

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1,\ldots,X_n) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1,\ldots,X_n))} \, dX_1 \, \ldots \, dX_n.$$

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1,\ldots,X_n) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1,\ldots,X_n))} \, dX_1\,\ldots\,dX_n.$$

Then, for each non-constant selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$, we have that (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{2}{2d+2-5}$.

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1,\ldots,X_n) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1,\ldots,X_n))} \, dX_1 \, \ldots \, dX_n.$$

Then, for each non-constant selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$, we have that (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{2}{2^{d+2}-5}$.

(ii) With respect to the Kolmogorov distance Δ , we have that

$$\Delta(\mu_{Y^{(N)}},\mu)\to 0 \qquad \text{as } N\to\infty.$$

Corollary (M., Speicher, Yin (2018); Banna, M. (2018))

Let $b_0, b_1, \ldots, b_n \in M_d(\mathbb{C})$ be selfadjoint such that the quantum operator

 $\mathcal{L}: M_d(\mathbb{C}) \to M_d(\mathbb{C}), \quad b \mapsto b_1 b b_1 + \dots + b_n b b_n$

satisfies $\mathcal{L}(b) \geq c \operatorname{tr}_d(b) \mathbb{1}_d$ for all positive $b \in M_d(\mathbb{C})$ for some c > 0. Put

$$\mathbf{X}^{(N)} := b_0 \otimes \mathbb{1}_N + b_1 \otimes X_1^{(N)} + \dots + b_n \otimes X_n^{(N)}$$

for independent standard Gaussian random matrices $(X_1^{(N)}, \ldots, X_n^{(N)})$ and $\mathbf{S} := b_0 \otimes 1 + b_1 \otimes S_1 + \cdots + b_n \otimes S_n$

for freely independent semicircular elements S_1, \ldots, S_n .

Corollary (M., Speicher, Yin (2018); Banna, M. (2018))

Let $b_0, b_1, \ldots, b_n \in M_d(\mathbb{C})$ be selfadjoint such that the quantum operator

 $\mathcal{L}: M_d(\mathbb{C}) \to M_d(\mathbb{C}), \quad b \mapsto b_1 b b_1 + \dots + b_n b b_n$

satisfies $\mathcal{L}(b) \geq c \operatorname{tr}_d(b) \mathbb{1}_d$ for all positive $b \in M_d(\mathbb{C})$ for some c > 0. Put

 $\mathbf{X}^{(N)} := b_0 \otimes \mathbf{1}_N + b_1 \otimes X_1^{(N)} + \dots + b_n \otimes X_n^{(N)}$

for independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ and

 $\mathbf{S} := b_0 \otimes 1 + b_1 \otimes S_1 + \dots + b_n \otimes S_n$

for freely independent semicircular elements S_1, \ldots, S_n . Then we have: (i) $\mathcal{F}_{\mathbf{S}}$ is Hölder continuous with exponent $\frac{2}{3}$. (ii) There is some C > 0 such that $\Delta(\overline{\mu}_{\mathbf{X}^{(N)}}, \mu_{\mathbf{S}}) \leq CN^{-4/29}$.

Corollary (M., Speicher, Yin (2018); Banna, M. (2018))

Let $b_0, b_1, \ldots, b_n \in M_d(\mathbb{C})$ be selfadjoint such that the quantum operator

 $\mathcal{L}: M_d(\mathbb{C}) \to M_d(\mathbb{C}), \quad b \mapsto b_1 b b_1 + \dots + b_n b b_n$

satisfies $\mathcal{L}(b) \geq c \operatorname{tr}_d(b) \mathbb{1}_d$ for all positive $b \in M_d(\mathbb{C})$ for some c > 0. Put

 $\mathbf{X}^{(N)} := b_0 \otimes \mathbf{1}_N + b_1 \otimes X_1^{(N)} + \dots + b_n \otimes X_n^{(N)}$

for independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ and

 $\mathbf{S} := b_0 \otimes 1 + b_1 \otimes S_1 + \dots + b_n \otimes S_n$

for freely independent semicircular elements S_1, \ldots, S_n . Then we have: (i) $\mathcal{F}_{\mathbf{S}}$ is Hölder continuous with exponent $\frac{2}{3}$. (ii) There is some C > 0 such that $\Delta(\overline{\mu}_{\mathbf{X}(N)}, \mu_{\mathbf{S}}) \leq CN^{-4/29}$.

Thank you!