
Regularity properties of limiting eigenvalue distributions

by means of free probability theory

Tobias Mai

Saarland University

Workshop �Sums & Products of Random Matrices�

ZiF Bielefeld � August 30, 2018

Supported by the ERC Advanced Grant �Non-commutative distributions in free probability�

Tobias Mai (Saarland University) Regularity properties August 30, 2018 1 / 20



Random matrices: the general frame

De�nition (Random matrices)

Let (Ω,F ,P) be a probability space. Elements in the complex ∗-algebra

AN := MN (L∞−(Ω,P)), where L∞−(Ω,P) :=
⋂

1≤p<∞
Lp(Ω,P),

are called random matrices (of size N ×N).

Remark

Each X ∈ AN is an MN (C)-valued random variable X : Ω→MN (C) and
thus induces a Borel probability measure Λ on MN (C) (or on MN (C)sa, in
case that X is selfadjoint) as the push-forward

Λ := X∗(P).

Thus, random matrices of size N ×N can alternatively be regarded as
elements in a classical probability space (MN (C),Λ) (or (MN (C)sa,Λ)).
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Random matrices: GUE's

De�nition (Gaussian random matrix)

A standard Gaussian random matrix (of size N ×N) is a selfadjoint
random matrix X = (Xk,l)

N
k,l=1 ∈ AN for which

{Re(Xk,l) | 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l) | 1 ≤ k < l ≤ N}

are independent Gaussian random variables such that

E[Xk,l] = 0 and E[|Xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.

A standard Gaussian random matrix follows the law of the GUE, which is
the probability measure ΛN on MN (C)sa ∼= RN2

that is determined by

dΛN (X) :=
1

ZN
e−

N
2
Tr(X2) dX with ZN := 2N/2

( π
N

)N2/2

and dX :=
∏N
k=1 dXk,k

∏
1≤k<l≤N dRe(Xk,l) d Im(Xk,l).
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Eigenvalue distributions

Consider a random matrix X of size N ×N .

Gaussian random matrices

 Wigner's semicircle theorem

De�nition

The empirical eigenvalue distribution of
X is the random probability measure µX
on C that is given by

ω 7→ µX(ω) :=
1

N

N∑
j=1

δλj(ω).
-2 -1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
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The mean eigenvalue distribution of X is
the probability measure µX on C that is
given by

µX := E[µX ].
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What have we talked about last time?

For each N ∈ N, let independent
standard Gaussian random matrices
X

(N)
1 , . . . , X

(N)
n be given. Further,

take a noncommutative polynomial or
rational function f . We combined

the analytic subordination
machinery of operator-valued
free probability theory with

algebraic linearization techniques

and the hermitization method

in order to compute the (expected)
limiting eigenvalue distribution of

Y (N) := f(X
(N)
1 , . . . , X(N)

n ).
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f(x, y) = (x+ i)−1(x+ iy)(x+ i)−1
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Noncommutative rational functions

A noncommutative polynomial is an expression of the form

P = a0 +
d∑

k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in (formal) noncommuting indeterminates x1, . . . , xn; the (unital)
complex ∗-algebra that consists of all noncommutative polynomials is
denoted by C〈x1, . . . , xn〉.
Elements in C (<x1, . . . , xn )>, which is the universal �eld of fractions

for C〈x1, . . . , xn〉, are called noncommutative rational functions.

Fact

A matrix Q ∈MN (C〈x1, . . . , xn〉) is invertible in MN (C (<x1, . . . , xn )>) if
and only if it is full, i.e., if there is no 1 ≤ k < N so that Q can be written
in the form Q = R1R2 for some rectangular matrices

R1 ∈MN×k(C〈x1, . . . , xn〉) and R2 ∈Mk×N (C〈x1, . . . , xn〉).

Otherwise, we denote by rank(Q) the minimal k with this property.
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W ∗-probability spaces and analytic distributions

De�nition

A (tracial) W ∗-probability space (M, τ) consists of

a von Neumann algebraM and

a faithful normal tracial state τ :M→ C.

De�nition (�analytic distribution�)

Let (M, τ) be a W ∗-probability space. The (analytic) distribution of
X = X∗ ∈M is the unique Borel probability measure µX on R that
satis�es

φ(Xk) =

∫
R
tk dµX(t) for all k = 0, 1, 2, . . . .
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Asymptotic freeness

This means: Asymptotic freeness relates

the limiting eigenvalue distribution of Y (N) = P (X
(N)
1 , . . . , X

(N)
n ) and

the distribution of Y = P (S1, . . . , Sn) for freely independent
semicircular elements S1, . . . , Sn.
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What will we talk about today?

X
(N)
1 , . . . , X

(N)
n , independent standard Gaussian random matrices

f , nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

Y (N) := f(X
(N)
1 , . . . , X(N)

n ).

From the obtained pictures, we see/guess that the distributions are �nice�.

Regularity Questions

But how nice are they actually?

In fact, very nice!

+ [Shlyakhtenko, Skoufranis, 2015]

What can we say for other random matrix models?

+ polynomials: [M., Speicher, Weber, 2014], [Charlesworth,
Shlyakhtenko, 2016], [M., Speicher, Weber, 2017]

+ rational functions: [M., Speicher, Yin , 2018]
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What other random matrix models?

Reminder

A standard Gaussian random matrix X(N) of size N ×N follows

dΛN (X) =
1

ZN
e−

N
2
Tr(X2) dX on MN (C)sa.

Independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) of

size N ×N follow the law

dΛnN (X) =
1

ZnN
e−

N
2
Tr(X2

1+···+X2
n) dX1 . . . dXn on (MN (C)sa)

n.

 replace 1
2

∑n
j=1X

2
j by another selfadjoint nc polynomial V (X1, . . . , Xn)

De�nition (Gibbs laws)

dΛVN (X1, . . . , Xn) =
1

ZVN
e−N Tr(V (X1,...,Xn)) dX1 . . . dXn

Tobias Mai (Saarland University) Regularity properties August 30, 2018 10 / 20



What other random matrix models?

Reminder

A standard Gaussian random matrix X(N) of size N ×N follows

dΛN (X) =
1

ZN
e−

N
2
Tr(X2) dX on MN (C)sa.

Independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) of

size N ×N follow the law

dΛnN (X) =
1

ZnN
e−

N
2
Tr(X2

1+···+X2
n) dX1 . . . dXn on (MN (C)sa)

n.

 replace 1
2

∑n
j=1X

2
j by another selfadjoint nc polynomial V (X1, . . . , Xn)

De�nition (Gibbs laws)

dΛVN (X1, . . . , Xn) =
1

ZVN
e−N Tr(V (X1,...,Xn)) dX1 . . . dXn

Tobias Mai (Saarland University) Regularity properties August 30, 2018 10 / 20



What other random matrix models?

Reminder

A standard Gaussian random matrix X(N) of size N ×N follows

dΛN (X) =
1

ZN
e−

N
2
Tr(X2) dX on MN (C)sa.

Independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) of

size N ×N follow the law

dΛnN (X) =
1

ZnN
e−

N
2
Tr(X2

1+···+X2
n) dX1 . . . dXn on (MN (C)sa)

n.

 replace 1
2

∑n
j=1X

2
j by another selfadjoint nc polynomial V (X1, . . . , Xn)

De�nition (Gibbs laws)

dΛVN (X1, . . . , Xn) =
1

ZVN
e−N Tr(V (X1,...,Xn)) dX1 . . . dXn

Tobias Mai (Saarland University) Regularity properties August 30, 2018 10 / 20



What other random matrix models?

Reminder

A standard Gaussian random matrix X(N) of size N ×N follows

dΛN (X) =
1

ZN
e−

N
2
Tr(X2) dX on MN (C)sa.

Independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) of

size N ×N follow the law

dΛnN (X) =
1

ZnN
e−

N
2
Tr(X2

1+···+X2
n) dX1 . . . dXn on (MN (C)sa)

n.

 replace 1
2

∑n
j=1X

2
j by another selfadjoint nc polynomial V (X1, . . . , Xn)

De�nition (Gibbs laws)

dΛVN (X1, . . . , Xn) =
1

ZVN
e−N Tr(V (X1,...,Xn)) dX1 . . . dXn

Tobias Mai (Saarland University) Regularity properties August 30, 2018 10 / 20



What other random matrix models?

Reminder

A standard Gaussian random matrix X(N) of size N ×N follows

dΛN (X) =
1

ZN
e−

N
2
Tr(X2) dX on MN (C)sa.

Independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) of

size N ×N follow the law

dΛnN (X) =
1

ZnN
e−

N
2
Tr(X2

1+···+X2
n) dX1 . . . dXn on (MN (C)sa)

n.

 replace 1
2

∑n
j=1X

2
j by another selfadjoint nc polynomial V (X1, . . . , Xn)

De�nition (Gibbs laws)

dΛVN (X1, . . . , Xn) =
1

ZVN
e−N Tr(V (X1,...,Xn)) dX1 . . . dXn

Tobias Mai (Saarland University) Regularity properties August 30, 2018 10 / 20



Asymptotic freeness revisited

Theorem (Guionnet, Shlyakhtenko (2009))

Let V ∈ C〈x1, . . . , xn〉 be �nice� and let (X
(N)
1 , . . . , X

(N)
n ) be random

matrices of size N ×N with law ΛVN . Then, for all P ∈ C〈x1, . . . , xn〉,

lim
N→∞

trN (P (X
(N)
1 , . . . , X(N)

n )) = τ(P (X1, . . . , Xn)) almost surely

for selfadjoint operators X1, . . . , Xn in some W ∗-probability space (M, τ)
that satisfy the Schwinger-Dyson equation, i.e.

(τ ⊗ τ)
(
(∂jP )(X1, . . . , Xn)

)
= τ

(
(DjV )(X1, . . . , Xn)P (X1, . . . , Xn)

)
for all P ∈ C〈x1, . . . , xn〉 and for every j = 1, . . . , n.

This means: We have a relation between

the limiting eigenvalue distribution of Y (N) = P (X
(N)
1 , . . . , X

(N)
n ) and

the distribution of Y = P (X1, . . . ,Xn) for �regular� X1, . . . , Xn.
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Noncommutative and cyclic derivatives

De�nition

(i) The noncommutative derivatives are the linear mappings

∂1, . . . , ∂n : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

which are uniquely determined by the two conditions
I ∂j(P1P2) = (∂jP1) · P2 + P1 · (∂jP2) for all P1, P2 ∈ C〈z1, . . . , zn〉,
I ∂jxi = δi,j1⊗ 1 for i, j = 1, . . . , n.

(ii) The cyclic derivatives are the linear mappings

D1, . . . , Dn : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉

that are de�ned by Dj := m̃ ◦ ∂j , where

m̃ : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

denotes the �ipped multiplication de�ned as m̃(P1 ⊗ P2) := P2P1.
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Conjugate variables and free Fisher information

Let (M, τ) be a tracial W ∗-probability space and consider any selfadjoint
noncommutative random variables X1, . . . , Xn ∈M.

De�nition (Voiculescu (1998); M., Speicher, Weber (2014))

If ξ1, . . . , ξn ∈ L2(X1, . . . , Xn; τ) are such that for all P ∈ C〈z1, . . . , zn〉

(τ ⊗ τ)((∂jP )(X1, . . . , Xn)) = τ(ξjP (X1, . . . , Xn)), j = 1, . . . , n,

then (ξ1, . . . , ξn) is called the conjugate system for (X1, . . . , Xn).

De�nition (Voiculescu (1998))

The (non-microstates) free Fisher information is de�ned by

Φ∗(X1, . . . , Xn) :=


n∑
j=1

‖ξj‖22,
if a conjugate system (ξ1, . . . , ξn)
for (X1, . . . , Xn) exists

∞, otherwise
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A useful variant of free entropy dimension

Suppose that S1, . . . , Sn are freely independent semicircular elements that
are also free from {X1, . . . , Xn}, then (X1 +

√
tSn, . . . , Xn +

√
tSn)

admits a conjugate system for each t > 0. More precisely, we have

n2

C2 + nt
≤ Φ∗(X1 +

√
tS1, . . . , Xn +

√
tSn) ≤ n

t
for all t > 0,

with C2 := τ(X2
1 + · · ·+X2

n).

De�nition

δ?(X1, . . . , Xn) := n− lim inf
t↘0

tΦ∗(X1 +
√
tS1, . . . , Xn +

√
tSn)

We always have that δ?(X1, . . . , Xn) ∈ [0, n].

Philosophy

If δ?(X1, . . . , Xn) = n, then (X1, . . . , Xn) has no atomic part.
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Absence of atoms
Suppose that δ?(X1, . . . , Xn) = n.

Theorem (CS16, MSW17)

Let P ∈ C〈x1, . . . , xn〉 be
selfadjoint and non-constant.
Then µP (X1,...,Xn) has no atoms.

Theorem (MSY18)

Let r ∈ C (<x1, . . . , xn )> be
selfadjoint and non-constant.
Then µr(X1,...,Xn) has no atoms.

Theorem (MSY18)

Take selfadjoint matrices b0, b1, . . . , bn ∈MN (C), then the
matrix-valued element Y := P(X1, . . . , Xn) for

P := b0 + b1x1 + · · ·+ bnxn ∈MN (C〈x1, . . . , xn〉)
has atoms precisely at the points in the set{

λ ∈ C | P− λ1N ∈MN (C〈x1, . . . , xn〉) is not full
}

with size µY({λ}) = 1− 1
N rank(P− λ1N ).

free analysis Atiyah property
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Matrix-valued elements � an example

For standard Gaussian random matrices X
(N)
1 , X

(N)
2 , X

(N)
3 consider

X(N) =

0 1 0
1 0 0
0 0 0

X
(N)
1 +

0 0 1
0 0 0
1 0 0

X
(N)
2 +

0 0 0
0 1

10 0
0 0 1

10

X
(N)
3 .

N = 1000, i.e.,
X(N) of size 3000× 3000.

[Ajanki, Erdös, Krüger (2016)]
[Alt, Erdös, Krüger (2018)]

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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Hölder continuity

Suppose that Φ∗(X1, . . . , Xn) <∞.

Theorem (Banna, M. (2018))

Let P ∈ C〈x1, . . . , xn〉 be selfadjoint with degree d ≥ 1 and consider

Y := P (X1, . . . , Xn).

Then there exists some constant C > 0 (depending on P and X1, . . . , Xn)
such that the cumulative distribution function FY of Y , which is de�ned as
FY (t) := µY ((−∞, t]), satis�es

|FY (t)−FY (s)| ≤ C|t− s|
2

2d+2−5 for all s, t ∈ R.

In fact, for every R > maxi=1,...,n ‖Xi‖, we can take

C =
d−1∏
k=1

( d!

(d− k)!

) 2k

2d+2−5 ρR(P )
− 2d

2d+2−5 ‖P‖
− 2

2d+2−5

R

(
8RΦ∗(X)1/2

) 2(2d−1)

2d+2−5 .
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Hölder continuity � consequences I

Suppose that Φ∗(X1, . . . , Xn) <∞.

Corollary (Banna, M. (2018))

Let P ∈ C〈x1, . . . , xn〉 be selfadjoint with degree d ≥ 1; consider

Y := P (X1, . . . , Xn).

Then, the logarithmic energy (and thus also the free entropy χ∗(Y ))

I(µY ) :=

∫
R

∫
R

log
1

|s− t|
dµY (s) dµY (t)

is �nite; in fact, there is an explicit bound in terms of the input data.

Remark

This is a �rst step towards a conjecture of Charlesworth and Shlyakhtenko
saying that this should hold under the weaker condition

χ∗(X1, . . . , Xn) > −∞.
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saying that this should hold under the weaker condition

χ∗(X1, . . . , Xn) > −∞.
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Hölder continuity � consequences II

Corollary (Banna, M. (2018))

Let V ∈ C〈x1, . . . , xn〉 be �nice� and let (X
(N)
1 , . . . , X

(N)
n ) be random

matrices of size N ×N distributed according to the Gibbs law

dΛVN (X1, . . . , Xn) =
1

ZVN
e−N Tr(V (X1,...,Xn)) dX1 . . . dXn.

Then, for each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have that

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 2

2d+2−5 .

(ii) With respect to the Kolmogorov distance ∆, we have that

∆(µY (N) , µ)→ 0 as N →∞.
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Hölder continuity � consequences II

Corollary (M., Speicher, Yin (2018); Banna, M. (2018))

Let b0, b1, . . . , bn ∈Md(C) be selfadjoint such that the quantum operator

L : Md(C)→Md(C), b 7→ b1bb1 + · · ·+ bnbbn

satis�es L(b) ≥ c trd(b)1d for all positive b ∈Md(C) for some c > 0. Put

X(N) := b0 ⊗ 1N + b1 ⊗X(N)
1 + · · ·+ bn ⊗X(N)

n

for independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) and

S := b0 ⊗ 1 + b1 ⊗ S1 + · · ·+ bn ⊗ Sn
for freely independent semicircular elements S1, . . . , Sn.

Then we have:

(i) FS is Hölder continuous with exponent 2
3 .

(ii) There is some C > 0 such that ∆(µX(N) , µS) ≤ CN−4/29.

Thank you!
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