Spectral distributions of noncommutative functions: from free probability to random matrix theory

Tobias Mai

Saarland University

Oberseminar Stochastics Institute for Applied Mathematics University of Bonn

July 11, 2019

erc

Supported by the ERC Advanced Grant "Non-commutative distributions in free probability"

Spectral distributions

Random matrices

Tobias Mai (Saarland University)

Random matrices

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

 $\mathcal{A}_N:=M_N(L^{\infty-}(\Omega,\mathbb{P})), \quad \text{where} \quad L^{\infty-}(\Omega,\mathbb{P}):=\bigcap_{1\leq p<\infty}L^p(\Omega,\mathbb{P}),$

are called random matrices (of size $N \times N$).

Random matrices

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

 $\mathcal{A}_N:=M_N(L^{\infty-}(\Omega,\mathbb{P})), \quad \text{where} \quad L^{\infty-}(\Omega,\mathbb{P}):=\bigcap_{1\leq p<\infty}L^p(\Omega,\mathbb{P}),$

are called random matrices (of size $N \times N$).

Definition (Gaussian random matrix)

A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

 $\mathbb{E}[X_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|X_{k,l}|^2] = N^{-1} \quad \text{for } 1 \leq k \leq l \leq N.$

Consider a random matrix X of size $N \times N$.

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

stand. Gaussian rand. matrices

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

IS stand. Gaussian rand. matrices

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

 $\overline{\mu}_X := \mathbb{E}[\mu_X].$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

 $\overline{\mu}_X := \mathbb{E}[\mu_X].$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

 $\overline{\mu}_X := \mathbb{E}[\mu_X].$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

 $\overline{\mu}_X := \mathbb{E}[\mu_X].$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

 $\overline{\mu}_X := \mathbb{E}[\mu_X].$

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Definition

The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

 $\overline{\mu}_X := \mathbb{E}[\mu_X].$

stand. Gaussian rand. matrices → Wigner's semicircle theorem

Theorem (Wigner (1955/1958))

Consider a sequence $(X^{(N)})_{N \in \mathbb{N}}$ of standard Gaussian random matrices $X^{(N)} \in \mathcal{A}_N$. Then, for all integers $k \ge 0$, it holds true that

$$\lim_{n \to \infty} \mathbb{E} \Big[\int_{\mathbb{R}} t^k \, d\mu_{X_n}(t) \Big] = \int_{\mathbb{R}} t^k \, d\mu_S(t)$$

Theorem (Wigner (1955/1958) & Arnold (1967))

Consider a sequence $(X^{(N)})_{N\in\mathbb{N}}$ of standard Gaussian random matrices $X^{(N)}\in\mathcal{A}_N$. Then, for all integers $k\geq 0$, it holds true that

$$\lim_{n \to \infty} \mathbb{E} \Big[\int_{\mathbb{R}} t^k \, d\mu_{X_n}(t) \Big] = \int_{\mathbb{R}} t^k \, d\mu_S(t)$$

and in fact even

$$\lim_{n o\infty}\int_{\mathbb{R}}t^k\,d\mu_{X_n}(t)=\int_{\mathbb{R}}t^k\,d\mu_S(t)$$
 almost surely.

Tobias Mai (Saarland University)

Tobias Mai (Saarland University)

First Question

For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices

 $X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$

be given and suppose that f is "some kind of noncommutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

 $Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}) ?$

First Question

For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices

 $X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$

be given and suppose that f is "some kind of noncommutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

 $Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)})$?

First Question

For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices

 $X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$

be given and suppose that f is "some kind of noncommutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}) ?$$

 $f(x,y) = (x+i)^{-1}(x+iy)(x+i)^{-1}$

First Question

For each $N \in \mathbb{N}$, let independent standard Gaussian random matrices

 $X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$

be given and suppose that f is "some kind of noncommutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}) ?$$

→ Free Probability!

$$f(x,y) = (x+i)^{-1}(x+iy)(x+i)^{-1}$$

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Example

Definition

- A noncommutative probability space (\mathcal{A},ϕ) consists of
 - ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
 - a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Example

• $(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E})$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$.

Definition

- A noncommutative probability space (\mathcal{A},ϕ) consists of
 - ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
 - a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Example

- $(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E})$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$.
- $(M_N(\mathbb{C}), \operatorname{tr}_N)$, where tr_N is the normalized trace on $M_N(\mathbb{C})$.

Definition

- A noncommutative probability space (\mathcal{A},ϕ) consists of
 - ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
 - a linear functional $\phi : \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Example

- $(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E})$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$.
- $(M_N(\mathbb{C}), \operatorname{tr}_N)$, where tr_N is the normalized trace on $M_N(\mathbb{C})$.
- (\mathcal{A}_N,ϕ_N) , with $\mathcal{A}_N=M_N(L^{\infty-}(\Omega,\mathbb{P}))$ and expectation given by

$$\phi_N(X) := \mathbb{E}[\operatorname{tr}_N(X)] = \int_{\Omega} \operatorname{tr}_N(X(\omega)) d\mathbb{P}(\omega).$$

Definition

A noncommutative probability space (\mathcal{A},ϕ) is called

- $\bullet \ C^*\mbox{-}{\rm probability}$ space if
 - \mathcal{A} is a unital C^* -algebra and
 - $\blacktriangleright \phi$ is a state on ${\cal A}.$

Definition

A noncommutative probability space (\mathcal{A},ϕ) is called

- C^* -probability space if
 - \mathcal{A} is a unital C^* -algebra and
 - ϕ is a state on $\mathcal A$.
- ullet tracial W^* -probability space, if
 - ${\mathcal A}$ is a von Neumann algebra and
 - ϕ is a faithful normal tracial state on ${\cal A}.$

Definition

A noncommutative probability space (\mathcal{A},ϕ) is called

- C^* -probability space if
 - \mathcal{A} is a unital C^* -algebra and
 - $\blacktriangleright \phi$ is a state on ${\cal A}.$
- ullet tracial W^* -probability space, if
 - ${\mathcal A}$ is a von Neumann algebra and
 - ϕ is a faithful normal tracial state on \mathcal{A} .

Definition ("analytic distribution")

Let (\mathcal{A}, ϕ) be a C^* -probability space and consider $X = X^* \in \mathcal{A}$. The (analytic) distribution of X is the unique Borel probability measure μ_X on \mathbb{R} such that

$$\phi(X^k) = \int_{\mathbb{R}} t^k d\mu_X(t)$$
 for all integers $k \ge 0$.
Tobias Mai (Saarland University)

Definition

Let (\mathcal{A},ϕ) be a noncommutative probability space.

(i) Unital subalgebras $(A_i)_{i \in I}$ of A are called freely independent (or just free), if

$$\phi(a_1\cdots a_k)=0$$

holds, whenever

$$a_j \in \mathcal{A}_{i(j)} \text{ with } i(j) \in I \text{ for all } j = 1, ..., k, \phi(a_j) = 0 \text{ for } j = 1, ..., k, i(1) ≠ i(2), i(2) ≠ i(3), ..., i(k-1) ≠ i(k)$$

Definition

Let (\mathcal{A},ϕ) be a noncommutative probability space.

(i) Unital subalgebras $(A_i)_{i \in I}$ of A are called freely independent (or just free), if

$$\phi(a_1\cdots a_k)=0$$

holds, whenever

$$\begin{array}{l} a_j \in \mathcal{A}_{i(j)} \text{ with } i(j) \in I \text{ for all } j = 1, \dots, k, \\ \phi(a_j) = 0 \text{ for } j = 1, \dots, k, \\ i(1) \neq i(2), \ i(2) \neq i(3), \ \dots, \ i(k-1) \neq i(k) \end{array}$$

(ii) Elements $(X_i)_{i \in I}$ of \mathcal{A} are called freely independent (or just free), if the algebras $(\mathcal{A}_i)_{i \in I}$ with $\mathcal{A}_i := alg\{1_{\mathcal{A}}, X_i\}$ for any $i \in I$ are freely independent.

Definition

Let (\mathcal{A},ϕ) be a noncommutative probability space.

(i) Unital subalgebras $(A_i)_{i \in I}$ of A are called freely independent (or just free), if

$$\phi(a_1\cdots a_k)=0$$

holds, whenever

$$\begin{array}{l} a_j \in \mathcal{A}_{i(j)} \text{ with } i(j) \in I \text{ for all } j = 1, \dots, k, \\ \phi(a_j) = 0 \text{ for } j = 1, \dots, k, \\ i(1) \neq i(2), \ i(2) \neq i(3), \ \dots, \ i(k-1) \neq i(k) \end{array}$$

(ii) Elements $(X_i)_{i \in I}$ of \mathcal{A} are called freely independent (or just free), if the algebras $(\mathcal{A}_i)_{i \in I}$ with $\mathcal{A}_i := alg\{1_{\mathcal{A}}, X_i\}$ for any $i \in I$ are freely independent.

Free probability theory is a highly noncommutative analogue of classical probability theory.

Tobias Mai (Saarland University)

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991))

For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N\to\infty} \mathbb{E}[\operatorname{tr}_N(P(X_1^{(N)},\ldots,X_n^{(N)}))] = \phi(P(S_1,\ldots,S_n))$

for freely independent semicircular elements S_1, \ldots, S_n in some noncommutative probability space (\mathcal{A}, ϕ) .

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \phi(P(S_1, \dots, S_n)) \quad \text{almost surely}$

for freely independent semicircular elements S_1, \ldots, S_n in some noncommutative probability space (\mathcal{A}, ϕ) .

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \phi(P(S_1, \dots, S_n)) \quad \text{almost surely}$

for freely independent semicircular elements S_1, \ldots, S_n in some noncommutative probability space (\mathcal{A}, ϕ) .

This means: Asymptotic freeness relates (in this case)

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(S_1, \ldots, S_n)$ for freely independent semicircular elements S_1, \ldots, S_n .

Tobias Mai (Saarland University)

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

• Noncommutative polynomials

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

● Noncommutative polynomials ✓ [Voiculescu (1991)]

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

• Noncommutative polynomials \checkmark [Voiculescu (1991)]

• Noncommutative rational expressions

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

• Noncommutative polynomials \checkmark [Voiculescu (1991)]

• Noncommutative rational expressions

[Yin (2017)]

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

- Noncommutative polynomials \checkmark [Voiculescu (1991)]
- Noncommutative rational expressions

[Voiculescu (1991)] [Yin (2017)]

Case 2: non-selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

- Noncommutative polynomials ✓ [Voiculescu (1991)]
- Noncommutative rational expressions

[Voiculescu (1991)] [Yin (2017)]

Case 2: non-selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

- Noncommutative polynomials
- Noncommutative rational expressions

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \ldots, X_n^{(N)})$

[Voiculescu (1991)] Noncommutative polynomials

Noncommutative rational expressions

[Yin (2017)]

Case 2: non-selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \ldots, X_n^{(N)})$

- Noncommutative polynomials ?
- Noncommutative rational expressions ???
- ... but conjectured to be given by the so-called Brown measure!

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

[Voiculescu (1991)] Noncommutative polynomials

Noncommutative rational expressions

[Yin (2017)]

Case 2: non-selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

- Noncommutative polynomials ?
- Noncommutative rational expressions ???
- ... but conjectured to be given by the so-called Brown measure!

And how about the limit?

For the (expected) limiting object $Y := f(X_1, \ldots, X_n)$, we can compute • its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]

Case 1: selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

[Voiculescu (1991)] Noncommutative polynomials

Noncommutative rational expressions

[Yin (2017)]

Case 2: non-selfadjoint functions $Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$

- Noncommutative polynomials ?
- Noncommutative rational expressions ???
- ... but conjectured to be given by the so-called Brown measure!

And how about the limit?

For the (expected) limiting object $Y := f(X_1, \ldots, X_n)$, we can compute

- its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]
- its Brown measure in Case 2

[Belinschi, Sniady, Speicher (2015)] [Helton, M., Speicher (2015)]

Example I – Distributions

 $p(x_1, x_2) := x_1 x_2 + x_2 x_1$

Example I – Distributions

 $p(x_1, x_2) := x_1 x_2 + x_2 x_1$

Eigenvalues of $p(X_1, X_2)$, where X_1, X_2 are independent self-adjoint Gaussian random matrices of size $1000 \times 1000 \dots$

Example I – Distributions

 $p(x_1, x_2) := x_1 x_2 + x_2 x_1$

Eigenvalues of $p(X_1, X_2)$, where X_1, X_2 are independent self-adjoint Gaussian random matrices of size $1000 \times 1000 \dots$

... compared to the distribution of $p(X_1, X_2)$, where X_1, X_2 are freely independent semicircular elements.

Example II – Distributions

 $r(x_1, x_2) := (4 - x_1)^{-1} + (4 - x_1)^{-1} x_2 ((4 - x_1) - x_2(4 - x_1)^{-1} x_2)^{-1} x_2 (4 - x_1)^{-1}$

Example II – Distributions

$$r(x_1, x_2) := (4 - x_1)^{-1} + (4 - x_1)^{-1} x_2 ((4 - x_1) - x_2(4 - x_1)^{-1} x_2)^{-1} x_2 (4 - x_1)^{-1}$$

Eigenvalues of $r(X_1, X_2)$, where X_1, X_2 are independent self-adjoint Gaussian random matrices of size $1000 \times 1000 \dots$

Example II – Distributions

$$r(x_1, x_2) := (4 - x_1)^{-1} + (4 - x_1)^{-1} x_2 ((4 - x_1) - x_2(4 - x_1)^{-1} x_2)^{-1} x_2 (4 - x_1)^{-1}$$

Eigenvalues of $r(X_1, X_2)$, where X_1, X_2 are independent self-adjoint Gaussian random matrices of size $1000 \times 1000 \dots$

... compared to the distribution of $r(X_1, X_2)$, where X_1, X_2 are freely independent semicircular elements.

$$r(x_1, x_2) := (x_1 + i)^{-1} (x_1 + ix_2) (x_1 + i)^{-1}$$

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

Eigenvalues of $r(X_1,X_2),$ where X_1,X_2 are independent self-adjoint Gaussian random matrices of size 1000×1000 ...

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

Eigenvalues of $r(X_1,X_2)$, where X_1,X_2 are independent self-adjoint Gaussian random matrices of size 1000×1000 ...

... compared to the Brown measure of $r(X_1,X_2)$, where X_1,X_2 are freely independent semicircular elements.

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

Eigenvalues of $r(X_1, X_2)$, where X_1, X_2 are independent random matrices of size 1000×1000 , X_1 Gaussian and X_2 Wishart ...

... compared to the Brown measure of $r(X_1, X_2)$, where X_1, X_2 are freely independent elements, X_1 semicircular and X_2 free Poisson.

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

 $Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$

From the obtained pictures, we see/guess that the distributions are "nice".

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Second Question

• But how nice are they actually?

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Second Question

• But how nice are they actually? In fact, very nice!

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Second Question

But how nice are they actually? In fact, very nice!
 Shlyakhtenko, Skoufranis, 2015]

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Second Question

- But how nice are they actually? In fact, very nice!
 Image: Shlyakhtenko, Skoufranis, 2015]
- What can we say for other random matrix models?

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Second Question

- But how nice are they actually? In fact, very nice!
 Image: Shlyakhtenko, Skoufranis, 2015]
- What can we say for other random matrix models?
 - polynomials: [M., Speicher, Weber, 2014], [Charlesworth, Shlyakhtenko, 2016], [M., Speicher, Weber, 2017], [Banna, M., 2018/2019]
What do these pictures tell us?

X₁^(N),...,X_n^(N), independent standard Gaussian random matrices
 f, (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}).$$

From the obtained pictures, we see/guess that the distributions are "nice".

Second Question

- But how nice are they actually? In fact, very nice!
 Shlyakhtenko, Skoufranis, 2015]
- What can we say for other random matrix models?

polynomials: [M., Speicher, Weber, 2014], [Charlesworth, Shlyakhtenko, 2016], [M., Speicher, Weber, 2017], [Banna, M., 2018/2019]

☞ rational functions: [M., Speicher, Yin , 2018/2019]

Another class: operator- and matrix-valued elements

Another class: operator- and matrix-valued elements For standard Gaussian random matrices $X_1^{(N)}, X_2^{(N)}, X_3^{(N)}$ consider

$$\mathbf{X}^{(N)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_1^{(N)} + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} X_2^{(N)} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{10} & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix} X_3^{(N)}$$

Another class: operator- and matrix-valued elements For standard Gaussian random matrices $X_1^{(N)}, X_2^{(N)}, X_3^{(N)}$ consider

$$\mathbf{X}^{(N)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_1^{(N)} + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} X_2^{(N)} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{10} & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix} X_3^{(N)}$$

N=1000, i.e., $\mathbf{X}^{(N)}$ of size 3000×3000 .

Another class: operator- and matrix-valued elements For standard Gaussian random matrices $X_1^{(N)}, X_2^{(N)}, X_3^{(N)}$ consider

$$\mathbf{X}^{(N)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_1^{(N)} + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} X_2^{(N)} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{10} & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix} X_3^{(N)}$$

N=1000, i.e., $\mathbf{X}^{(N)}$ of size 3000×3000 .

[Ajanki, Erdös, Krüger (2016)] [Alt, Erdös, Krüger (2018)]

Observation

Consider a random matrix $X \in \mathcal{A}_N = M_N(L^{\infty-}(\Omega, \mathbb{P})).$

Observation

Consider a random matrix $X \in \mathcal{A}_N = M_N(L^{\infty-}(\Omega, \mathbb{P})).$

• X is an $M_N(\mathbb{C})$ -valued random variable $X : \Omega \to M_N(\mathbb{C})$.

Observation

Consider a random matrix $X \in \mathcal{A}_N = M_N(L^{\infty-}(\Omega, \mathbb{P})).$

- X is an M_N(ℂ)-valued random variable X : Ω → M_N(ℂ).
- Let Λ be the Borel probability measure on $M_N(\mathbb{C})$ (or on $M_N(\mathbb{C})_{sa}$, in case that X is selfadjoint) which is given as the push-forward $X_*(\mathbb{P})$.

Observation

Consider a random matrix $X \in \mathcal{A}_N = M_N(L^{\infty-}(\Omega, \mathbb{P})).$

- X is an M_N(ℂ)-valued random variable X : Ω → M_N(ℂ).
- Let Λ be the Borel probability measure on $M_N(\mathbb{C})$ (or on $M_N(\mathbb{C})_{sa}$, in case that X is selfadjoint) which is given as the push-forward $X_*(\mathbb{P})$.
- X lives in the probability space $(M_N(\mathbb{C}), \Lambda)$ (or $(M_N(\mathbb{C})_{sa}, \Lambda)$).

Observation

Consider a random matrix $X \in \mathcal{A}_N = M_N(L^{\infty-}(\Omega, \mathbb{P})).$

- X is an $M_N(\mathbb{C})$ -valued random variable $X: \Omega \to M_N(\mathbb{C})$.
- Let Λ be the Borel probability measure on $M_N(\mathbb{C})$ (or on $M_N(\mathbb{C})_{sa}$, in case that X is selfadjoint) which is given as the push-forward $X_*(\mathbb{P})$.
- X lives in the probability space $(M_N(\mathbb{C}), \Lambda)$ (or $(M_N(\mathbb{C})_{sa}, \Lambda)$).

Example

A standard Gaussian random matrix follows the law of the GUE, which is the probability measure Λ_N on $M_N(\mathbb{C})_{sa} \cong \mathbb{R}^{N^2}$ that is determined by

$$d\Lambda_N(X) := rac{1}{Z_N} e^{-rac{N}{2}\operatorname{Tr}(X^2)} \, dX \quad ext{with} \quad Z_N := 2^{N/2} \Big(rac{\pi}{N}\Big)^{N^2/2}$$

and $dX := \prod_{k=1}^N dX_{k,k} \prod_{1 \le k < l \le N} d\operatorname{Re}(X_{k,l}) d\operatorname{Im}(X_{k,l}).$

Observation

ullet A single standard Gaussian random matrix $X^{(N)}$ of size N imes N follows

$$d\Lambda_N(X) = rac{1}{Z_N} e^{-rac{N}{2}\operatorname{Tr}(X^2)} \, dX$$
 on $M_N(\mathbb{C})_{\mathrm{sa}}$

Observation

• A single standard Gaussian random matrix $X^{(N)}$ of size N imes N follows

$$d\Lambda_N(X) = rac{1}{Z_N} e^{-rac{N}{2}\operatorname{Tr}(X^2)} dX$$
 on $M_N(\mathbb{C})_{\mathrm{sa}}$.

• Independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ of size $N\times N$ follow the law

$$d\Lambda_N^n(X) = \frac{1}{Z_N^n} e^{-\frac{N}{2} \operatorname{Tr}(X_1^2 + \dots + X_n^2)} \, dX_1 \, \dots \, dX_n \qquad \text{on } (M_N(\mathbb{C})_{\operatorname{sa}})^n.$$

Observation

ullet A single standard Gaussian random matrix $X^{(N)}$ of size N imes N follows

$$d\Lambda_N(X) = rac{1}{Z_N} e^{-rac{N}{2}\operatorname{Tr}(X^2)} dX$$
 on $M_N(\mathbb{C})_{\mathrm{sa}}$.

• Independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ of size $N\times N$ follow the law

$$d\Lambda_N^n(X) = \frac{1}{Z_N^n} e^{-\frac{N}{2} \operatorname{Tr}(X_1^2 + \dots + X_n^2)} \, dX_1 \, \dots \, dX_n \qquad \text{on } (M_N(\mathbb{C})_{\operatorname{sa}})^n.$$

Idea: replace $\frac{1}{2}\sum_{j=1}^{n}X_{j}^{2}$ by another selfadjoint potential $V(X_{1},\ldots,X_{n})$

Observation

ullet A single standard Gaussian random matrix $X^{(N)}$ of size $N\times N$ follows

$$d\Lambda_N(X) = rac{1}{Z_N} e^{-rac{N}{2}\operatorname{Tr}(X^2)} dX$$
 on $M_N(\mathbb{C})_{\mathrm{sa}}$

• Independent standard Gaussian random matrices $(X_1^{(N)},\ldots,X_n^{(N)})$ of size $N\times N$ follow the law

$$d\Lambda_N^n(X) = \frac{1}{Z_N^n} e^{-\frac{N}{2} \operatorname{Tr}(X_1^2 + \dots + X_n^2)} dX_1 \dots dX_n \quad \text{on } (M_N(\mathbb{C})_{\operatorname{sa}})^n.$$

Idea: replace $\frac{1}{2} \sum_{j=1}^{n} X_j^2$ by another selfadjoint potential $V(X_1, \dots, X_n)$ Definition (Gibbs laws)

$$d\Lambda_N^V(X_1,\ldots,X_n) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1,\ldots,X_n))} \, dX_1 \, \ldots \, dX_n$$

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ with law Λ_N^V . Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \tau(P(X_1, \dots, X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation, i.e.

 $(\tau \otimes \tau) \big((\partial_j P)(X_1, \dots, X_n) \big) = \tau \big((D_j V)(X_1, \dots, X_n) P(X_1, \dots, X_n) \big)$

for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ and for every $j = 1, \ldots, n$.

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ with law Λ_N^V . Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N\to\infty} \operatorname{tr}_N(P(X_1^{(N)},\ldots,X_n^{(N)})) = \tau(P(X_1,\ldots,X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation, i.e.

 $(\tau \otimes \tau) ((\partial_j P)(X_1, \ldots, X_n)) = \tau ((D_j V)(X_1, \ldots, X_n) P(X_1, \ldots, X_n))$

for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ and for every $j = 1, \ldots, n$.

This means: We have a relation between

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(X_1, \ldots, X_n)$ for "regular" X_1, \ldots, X_n .

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ with law Λ_N^V . Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \tau(P(X_1, \dots, X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation, i.e.

 $(\tau \otimes \tau) ((\partial_j P)(X_1, \ldots, X_n)) = \tau ((D_j V)(X_1, \ldots, X_n) P(X_1, \ldots, X_n))$

for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ and for every $j = 1, \ldots, n$.

This means: We have a relation between

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(X_1, \ldots, X_n)$ for "regular" X_1, \ldots, X_n .

Noncommutative and cyclic derivatives

Tobias Mai (Saarland University)

Noncommutative and cyclic derivatives

Definition

(i) The noncommutative derivatives are the linear mappings

$$\partial_1, \ldots, \partial_n : \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle \otimes \mathbb{C}\langle x_1, \ldots, x_n \rangle$$

which are uniquely determined by the two conditions

 $\begin{array}{l} \partial_j(P_1P_2) = (\partial_jP_1) \cdot P_2 + P_1 \cdot (\partial_jP_2) \text{ for all } P_1, P_2 \in \mathbb{C}\langle x_1, \dots, x_n \rangle, \\ \partial_j x_i = \delta_{i,j} 1 \otimes 1 \text{ for } i, j = 1, \dots, n. \end{array}$

Noncommutative and cyclic derivatives

Definition

 $({\sf i})$ The noncommutative derivatives are the linear mappings

 $\partial_1,\ldots,\partial_n: \mathbb{C}\langle x_1,\ldots,x_n\rangle \to \mathbb{C}\langle x_1,\ldots,x_n\rangle \otimes \mathbb{C}\langle x_1,\ldots,x_n\rangle$

which are uniquely determined by the two conditions

 $\begin{array}{l} \partial_j(P_1P_2) = (\partial_jP_1) \cdot P_2 + P_1 \cdot (\partial_jP_2) \text{ for all } P_1, P_2 \in \mathbb{C}\langle x_1, \dots, x_n \rangle, \\ \partial_j x_i = \delta_{i,j} 1 \otimes 1 \text{ for } i, j = 1, \dots, n. \end{array}$

(ii) The cyclic derivatives are the linear mappings

$$D_1,\ldots,D_n: \mathbb{C}\langle x_1,\ldots,x_n \rangle \to \mathbb{C}\langle x_1,\ldots,x_n \rangle$$

that are defined by $D_j := \tilde{m} \circ \partial_j$, where

$$\tilde{m}: \mathbb{C}\langle x_1,\ldots,x_n \rangle \to \mathbb{C}\langle x_1,\ldots,x_n \rangle \otimes \mathbb{C}\langle x_1,\ldots,x_n \rangle$$

denotes the flipped multiplication defined as $\tilde{m}(P_1 \otimes P_2) := P_2 P_1$.

Tobias Mai (Saarland University)

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(X_1,\ldots,X_n; au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(X_1,\ldots,X_n; au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint noncommutative random variables $X_1, \ldots, X_n \in \mathcal{M}$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(X_1,\ldots,X_n; au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Definition (Voiculescu (1998))

The (non-microstates) free Fisher information is defined by

$$\Phi^*(X_1,\ldots,X_n) := \begin{cases} \sum_{j=1}^n \|\xi_j\|_2^2, & \text{if a conjugate system } (\xi_1,\ldots,\xi_n) \\ & \text{for } (X_1,\ldots,X_n) \text{ exists} \\ & \infty, & \text{otherwise} \end{cases}$$

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_1, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2 + nt} \le \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_1, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2+nt} \le \Phi^*(X_1+\sqrt{t}S_1,\ldots,X_n+\sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Definition

 $\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_1, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2+nt} \le \Phi^*(X_1+\sqrt{t}S_1,\ldots,X_n+\sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2)$.

Definition

$$\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_1, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2+nt} \le \Phi^*(X_1+\sqrt{t}S_1,\ldots,X_n+\sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Definition

$$\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

Philosophy If $\delta^{\star}(X_1, \ldots, X_n) = n$, then (X_1, \ldots, X_n) has no "atomic part".

Results about atoms |

Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

- ullet the operators X_1,\ldots,X_n are freely independent and
- ullet the individual analytic distributions $\mu_{X_1},\ldots,\mu_{X_n}$ are all non-atomic,

then the tuple $X = (X_1, \ldots, X_n)$ has the strong Atiyah property.

Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

- ullet the operators X_1,\ldots,X_n are freely independent and
- ullet the individual analytic distributions $\mu_{X_1},\ldots,\mu_{X_n}$ are all non-atomic,

then the tuple $X = (X_1, \ldots, X_n)$ has the strong Atiyah property.

Facts

If (X_1,\ldots,X_n) has the strong Atiyah property, then the following holds:

• For every selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$, the measure of each atom in the analytic distribution $\mu_{\mathbf{Y}}$ of the selfadjoint operator $\mathbf{Y} = \mathbf{P}(X_1, \ldots, X_n)$ is an integer multiple of $\frac{1}{N}$.
Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

- ullet the operators X_1,\ldots,X_n are freely independent and
- ullet the individual analytic distributions $\mu_{X_1},\ldots,\mu_{X_n}$ are all non-atomic,

then the tuple $X = (X_1, \ldots, X_n)$ has the strong Atiyah property.

Facts

If (X_1,\ldots,X_n) has the strong Atiyah property, then the following holds:

• For every selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$, the measure of each atom in the analytic distribution $\mu_{\mathbf{Y}}$ of the selfadjoint operator $\mathbf{Y} = \mathbf{P}(X_1, \ldots, X_n)$ is an integer multiple of $\frac{1}{N}$.

• In particular, if $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ is a non-constant selfadjoint polynomial, then the analytic distribution μ_Y of the selfadjoint operator $Y = P(X_1, \ldots, X_n)$ cannot have atoms.

Results about atoms II

Tobias Mai (Saarland University)

Results about atoms II Suppose that $\delta^*(X_1, \ldots, X_n) = n$.

Results about atoms || Suppose that $\delta^*(X_1, \ldots, X_n) = n$.

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17)

Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be a selfadjoint non-constant noncommutative polynomial and consider the selfadjoint operator

 $Y = P(X_1, \ldots, X_n).$

Then the analytic distribution μ_Y of Y does not have atoms.

Results about atoms || Suppose that $\delta^*(X_1, \ldots, X_n) = n$.

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17)

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be a selfadjoint non-constant noncommutative polynomial and consider the selfadjoint operator

 $Y = P(X_1, \ldots, X_n).$

Then the analytic distribution μ_Y of Y does not have atoms.

Theorem (M., Speicher, Yin , '18) $X = (X_1, \dots, X_n)$ has the strong Atiyah property.

Results about atoms || Suppose that $\delta^{\star}(X_1, \dots, X_n) = n$.

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17)

Let $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$ be a selfadjoint non-constant noncommutative polynomial and consider the selfadjoint operator

 $Y = P(X_1, \ldots, X_n).$

Then the analytic distribution μ_Y of Y does not have atoms.

Theorem (M., Speicher, Yin, '18)

 $X = (X_1, \ldots, X_n)$ has the strong Atiyah property. Furthermore, we have:

• For each selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$, the measure of each atom in the analytic distribution $\mu_{\mathbf{Y}}$ of the selfadjoint operator $\mathbf{Y} = \mathbf{P}(X_1, \ldots, X_n)$ is an integer multiple of $\frac{1}{N}$.

Results about atoms || Suppose that $\delta^{\star}(X_1, \dots, X_n) = n$.

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17)

Let $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$ be a selfadjoint non-constant noncommutative polynomial and consider the selfadjoint operator

 $Y = P(X_1, \ldots, X_n).$

Then the analytic distribution μ_Y of Y does not have atoms.

Theorem (M., Speicher, Yin, '18)

 $X = (X_1, \ldots, X_n)$ has the strong Atiyah property. Furthermore, we have:

• For each selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$, the measure of each atom in the analytic distribution $\mu_{\mathbf{Y}}$ of the selfadjoint operator $\mathbf{Y} = \mathbf{P}(X_1, \ldots, X_n)$ is an integer multiple of $\frac{1}{N}$.

• Both location and measure of all atoms are fully determined by P.

Hölder continuity of polynomials

Hölder continuity of polynomials Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Hölder continuity of polynomials Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Theorem (Banna, M. (2018)) Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint with degree $d \ge 1$ and consider

 $Y := P(X_1, \ldots, X_n).$

Then there exists some constant C>0 such that

 $|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{3(2^d - 1)}} \quad \text{for all } s, t \in \mathbb{R}.$

Hölder continuity of polynomials Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Theorem (Banna, M. (2018)) Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be selfadjoint with degree $d \ge 1$ and consider

 $Y := P(X_1, \dots, X_n).$

Then there exists some constant C > 0 such that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{3(2^d - 1)}} \quad \text{for all } s, t \in \mathbb{R}.$$

In fact, for every $R > \max_{i=1,\dots,n} \|X_i\|$, we can take

$$C = \left(8\Phi^*(X)^{1/2}R\right)^{\frac{2}{3}}\rho_R(P)^{-\frac{2^d}{3(2^d-1)}} \|P\|_R^{-\frac{2}{3(2^d-1)}} \prod_{k=1}^{d-1} \left(\frac{d!}{(d-k)!}\right)^{\frac{2^k}{3(2^d-1)}},$$

where $||P||_R$ and $\rho_R(P)$ are quantities that depend only on P and R.

Corollary (Banna, M. (2018))

Let $(X_1^{(N)},\ldots,X_n^{(N)})$ be independent Gaussian random matrices of size $N\times N.$

Corollary (Banna, M. (2018))

Let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be independent Gaussian random matrices of size $N \times N$. For each non-constant selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

 $Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

Corollary (Banna, M. (2018))

Let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be independent Gaussian random matrices of size $N \times N$. For each non-constant selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

 $Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

(ii) There is a constant C > 0 such that

$$d_{\operatorname{Kol}}(\overline{\mu}_{Y^{(N)}},\mu) \leq CN^{-rac{1}{13\cdot 2^{d+2}-60}} \qquad ext{for all } N\in\mathbb{N}.$$

Corollary (Banna, M. (2018))

Let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be independent Gaussian random matrices of size $N \times N$. For each non-constant selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

 $Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

(ii) There is a constant C>0 such that

 $d_{\mathrm{Kol}}(\overline{\mu}_{Y^{(N)}},\mu) \leq C N^{-\frac{1}{13\cdot 2^{d+2}-60}} \qquad \text{for all } N \in \mathbb{N}.$