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Random matrices

De�nition (Random matrices)

Let (Ω,F ,P) be a probability space. Elements in the complex ∗-algebra

AN := MN (L∞−(Ω,P)), where L∞−(Ω,P) :=
⋂

1≤p<∞
Lp(Ω,P),

are called random matrices (of size N ×N).

De�nition (Gaussian random matrix)

A standard Gaussian random matrix (of size N ×N) is a hermitian random
matrix X = (Xk,l)

N
k,l=1 ∈ AN for which

{Re(Xk,l) | 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l) | 1 ≤ k < l ≤ N}

are independent Gaussian random variables such that

E[Xk,l] = 0 and E[|Xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.
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Eigenvalue distributions

Consider a random matrix X of size N ×N .

stand. Gaussian rand. matrices

 Wigner's semicircle theorem

De�nition

The empirical eigenvalue distribution of
X is the random probability measure µX
on C that is given by

ω 7→ µX(ω) :=
1

N

N∑
j=1

δλj(ω).
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De�nition

The mean eigenvalue distribution of X is
the probability measure µX on C that is
given by

µX := E[µX ].
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Wigner's semicircle theorem

Semicircular distribution

dµS(t) =
1

2π

√
4− t2 1[−2,2](t) dt
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Theorem (Wigner (1955/1958))

Consider a sequence (X(N))N∈N of standard Gaussian random matrices

X(N) ∈ AN . Then, for all integers k ≥ 0, it holds true that

lim
n→∞

E
[ ∫

R
tk dµXn(t)

]
=

∫
R
tk dµS(t)
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Theorem (Wigner (1955/1958) & Arnold (1967))
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�Functions� in independent random matrices

First Question

For each N ∈ N, let independent
standard Gaussian random matrices

X
(N)
1 , . . . , X(N)

n ∈ AN

be given and suppose that f is �some
kind of noncommutative function�.
What can we say about the asymptotic
behavior of the empirical eigenvalue
distribution of

Y (N) := f(X
(N)
1 , . . . , X(N)

n ) ?

 Free Probability!
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f(x, y) = xy + yx
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f(x, y) = (x+ i)−1(x+ iy)(x+ i)−1
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Noncommutative probability spaces

De�nition

A noncommutative probability space (A, φ) consists of

a complex algebra A with unit 1A and

a linear functional φ : A → C satisfying φ(1A) = 1 (expectation).

Elements X ∈ A are called noncommutative random variables.

Example

(L∞(Ω,P),E), where (Ω,F ,P) is a classical probability space and E
the usual expectation that is given by E[X] =

∫
ΩX(ω) dP(ω).

(MN (C), trN ), where trN is the normalized trace on MN (C).

(AN , φN ), with AN = MN (L∞−(Ω,P)) and expectation given by

φN (X) := E[trN (X)] =

∫
Ω

trN (X(ω)) dP(ω).
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The analytic setup

De�nition

A noncommutative probability space (A, φ) is called

C∗-probability space if
I A is a unital C∗-algebra and
I φ is a state on A.

tracial W ∗-probability space, if
I A is a von Neumann algebra and
I φ is a faithful normal tracial state on A.

De�nition (�analytic distribution�)

Let (A, φ) be a C∗-probability space and consider X = X∗ ∈ A. The
(analytic) distribution of X is the unique Borel probability measure µX on
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Free independence

De�nition

Let (A, φ) be a noncommutative probability space.

(i) Unital subalgebras (Ai)i∈I of A are called freely independent (or just
free), if

φ(a1 · · · ak) = 0

holds, whenever
I aj ∈ Ai(j) with i(j) ∈ I for all j = 1, . . . , k,
I φ(aj) = 0 for j = 1, . . . , k,
I i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k).

(ii) Elements (Xi)i∈I of A are called freely independent (or just free), if
the algebras (Ai)i∈I with Ai := alg{1A, Xi} for any i ∈ I are freely
independent.

Free probability theory is a highly noncommutative

analogue of classical probability theory.
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Asymptotic freeness of random matrices

This means: Asymptotic freeness relates (in this case)

the limiting eigenvalue distribution of Y (N) = P (X
(N)
1 , . . . , X

(N)
n ) and

the distribution of Y = P (S1, . . . , Sn) for freely independent
semicircular elements S1, . . . , Sn.
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Back to our question ...

Case 1: selfadjoint functions Y (N) = f(X
(N)
1 , . . . , X

(N)
n )

Noncommutative polynomials

X [Voiculescu (1991)]

Noncommutative rational expressions

X [Yin (2017)]

Case 2: non-selfadjoint functions Y (N) = f(X
(N)
1 , . . . , X

(N)
n )

Noncommutative polynomials

?

Noncommutative rational expressions

? ? ?

... but conjectured to be given by the so-called Brown measure!

And how about the limit?

For the (expected) limiting object Y := f(X1, . . . , Xn), we can compute

its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]

its Brown measure in Case 2. [Belinschi, Sniady, Speicher (2015)]
[Helton, M., Speicher (2015)]
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Example I � Distributions

p(x1, x2) := x1x2 + x2x1

Eigenvalues of p(X1, X2), where
X1, X2 are independent self-adjoint

Gaussian random matrices of size

1000× 1000 ...

... compared to the distribution of

p(X1, X2), where X1, X2 are freely

independent semicircular elements.
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Example II � Distributions

r(x1, x2) := (4− x1)
−1 + (4− x1)

−1x2

(
(4− x1)− x2(4− x1)

−1x2

)−1
x2(4− x1)

−1

Eigenvalues of r(X1, X2), where
X1, X2 are independent self-adjoint

Gaussian random matrices of size

1000× 1000 ...

... compared to the distribution of

r(X1, X2), where X1, X2 are freely

independent semicircular elements.
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Example III � Brown measures

r(x1, x2) := (x1 + i)−1(x1 + ix2)(x1 + i)−1
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Eigenvalues of r(X1, X2), where X1, X2 are
independent self-adjoint Gaussian random matrices of size
1000 × 1000 ...
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... compared to the Brown measure of r(X1, X2), where
X1, X2 are freely independent semicircular elements.
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Eigenvalues of r(X1, X2), where X1, X2 are
independent random matrices of size 1000 × 1000, X1
Gaussian and X2 Wishart ...
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... compared to the Brown measure of r(X1, X2), where
X1, X2 are freely independent elements, X1 semicircular
and X2 free Poisson.
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What do these pictures tell us?

X
(N)
1 , . . . , X

(N)
n , independent standard Gaussian random matrices

f , (selfadjoint) nc polynomial or nc rational function

We can compute the (expected) limiting eigenvalue distribution of

Y (N) := f(X
(N)
1 , . . . , X(N)

n ).

From the obtained pictures, we see/guess that the distributions are �nice�.

Second Question

But how nice are they actually?

In fact, very nice!

+ [Shlyakhtenko, Skoufranis, 2015]

What can we say for other random matrix models?

+ polynomials: [M., Speicher, Weber, 2014], [Charlesworth,
Shlyakhtenko, 2016], [M., Speicher, Weber,
2017], [Banna, M., 2018/2019]

+ rational functions: [M., Speicher, Yin , 2018/2019]
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Another class: operator- and matrix-valued elements

For standard Gaussian random matrices X
(N)
1 , X

(N)
2 , X

(N)
3 consider

X(N) =

0 1 0
1 0 0
0 0 0

X
(N)
1 +

0 0 1
0 0 0
1 0 0

X
(N)
2 +

0 0 0
0 1

10 0
0 0 1

10

X
(N)
3 .

N = 1000, i.e.,
X(N) of size 3000× 3000.

+ [Ajanki, Erdös, Krüger (2016)]
[Alt, Erdös, Krüger (2018)]

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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What other random matrix models?

Observation

Consider a random matrix X ∈ AN = MN (L∞−(Ω,P)).

X is an MN (C)-valued random variable X : Ω→MN (C).

Let Λ be the Borel probability measure on MN (C) (or on MN (C)sa, in
case that X is selfadjoint) which is given as the push-forward X∗(P).

X lives in the probability space (MN (C),Λ) (or (MN (C)sa,Λ)).

Example

A standard Gaussian random matrix follows the law of the GUE, which is
the probability measure ΛN on MN (C)sa

∼= RN2
that is determined by

dΛN (X) :=
1

ZN
e−

N
2

Tr(X2) dX with ZN := 2N/2
( π
N

)N2/2

and dX :=
∏N
k=1 dXk,k

∏
1≤k<l≤N dRe(Xk,l) d Im(Xk,l).
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What other random matrix models?

Observation

A single standard Gaussian random matrix X(N) of size N ×N follows

dΛN (X) =
1

ZN
e−

N
2

Tr(X2) dX on MN (C)sa.

Independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) of

size N ×N follow the law

dΛnN (X) =
1

ZnN
e−

N
2

Tr(X2
1+···+X2

n) dX1 . . . dXn on (MN (C)sa)n.

Idea: replace 1
2

∑n
j=1X

2
j by another selfadjoint potential V (X1, . . . , Xn)

De�nition (Gibbs laws)

dΛVN (X1, . . . , Xn) =
1

ZVN
e−N Tr(V (X1,...,Xn)) dX1 . . . dXn
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Asymptotic freeness revisited

Theorem (Guionnet, Shlyakhtenko (2009))

Let V ∈ C〈x1, . . . , xn〉 be �nice� and let (X
(N)
1 , . . . , X

(N)
n ) be random

matrices of size N ×N with law ΛVN . Then, for all P ∈ C〈x1, . . . , xn〉,

lim
N→∞

trN (P (X
(N)
1 , . . . , X(N)

n )) = τ(P (X1, . . . , Xn)) almost surely

for selfadjoint operators X1, . . . , Xn in some W ∗-probability space (M, τ)
that satisfy the Schwinger-Dyson equation, i.e.

(τ ⊗ τ)
(
(∂jP )(X1, . . . , Xn)

)
= τ

(
(DjV )(X1, . . . , Xn)P (X1, . . . , Xn)

)
for all P ∈ C〈x1, . . . , xn〉 and for every j = 1, . . . , n.

This means: We have a relation between

the limiting eigenvalue distribution of Y (N) = P (X
(N)
1 , . . . , X

(N)
n ) and

the distribution of Y = P (X1, . . . ,Xn) for �regular� X1, . . . , Xn.
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Noncommutative and cyclic derivatives

De�nition

(i) The noncommutative derivatives are the linear mappings

∂1, . . . , ∂n : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

which are uniquely determined by the two conditions
I ∂j(P1P2) = (∂jP1) · P2 + P1 · (∂jP2) for all P1, P2 ∈ C〈x1, . . . , xn〉,
I ∂jxi = δi,j1⊗ 1 for i, j = 1, . . . , n.

(ii) The cyclic derivatives are the linear mappings

D1, . . . , Dn : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉

that are de�ned by Dj := m̃ ◦ ∂j , where

m̃ : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

denotes the �ipped multiplication de�ned as m̃(P1 ⊗ P2) := P2P1.
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Conjugate variables and free Fisher information

Let (M, τ) be a tracial W ∗-probability space and consider any selfadjoint
noncommutative random variables X1, . . . , Xn ∈M.

De�nition (Voiculescu (1998))

If ξ1, . . . , ξn ∈ L2(X1, . . . , Xn; τ) are such that for all P ∈ C〈x1, . . . , xn〉

(τ ⊗ τ)((∂jP )(X1, . . . , Xn)) = τ(ξjP (X1, . . . , Xn)), j = 1, . . . , n,

then (ξ1, . . . , ξn) is called the conjugate system for (X1, . . . , Xn).

De�nition (Voiculescu (1998))

The (non-microstates) free Fisher information is de�ned by

Φ∗(X1, . . . , Xn) :=


n∑
j=1

‖ξj‖22,
if a conjugate system (ξ1, . . . , ξn)
for (X1, . . . , Xn) exists

∞, otherwise
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A useful variant of free entropy dimension

Suppose that S1, . . . , Sn are freely independent semicircular elements that
are also free from {X1, . . . , Xn}, then (X1 +

√
tS1, . . . , Xn +

√
tSn)

admits a conjugate system for each t > 0. More precisely, we have

n2

C2 + nt
≤ Φ∗(X1 +

√
tS1, . . . , Xn +

√
tSn) ≤ n

t
for all t > 0,

with C2 := τ(X2
1 + · · ·+X2

n).

De�nition

δ?(X1, . . . , Xn) := n− lim inf
t↘0

tΦ∗(X1 +
√
tS1, . . . , Xn +

√
tSn)

We always have that δ?(X1, . . . , Xn) ∈ [0, n].

Philosophy

If δ?(X1, . . . , Xn) = n, then (X1, . . . , Xn) has no �atomic part�.
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Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

the operators X1, . . . , Xn are freely independent and

the individual analytic distributions µX1 , . . . , µXn are all non-atomic,

then the tuple X = (X1, . . . , Xn) has the strong Atiyah property.

Facts

If (X1, . . . , Xn) has the strong Atiyah property, then the following holds:

For every selfadjoint P ∈MN (C〈x1, . . . , xn〉), the measure of each
atom in the analytic distribution µY of the selfadjoint operator
Y = P(X1, . . . , Xn) is an integer multiple of 1

N .

In particular, if P ∈ C〈x1, . . . , xn〉 is a non-constant selfadjoint
polynomial, then the analytic distribution µY of the selfadjoint
operator Y = P (X1, . . . , Xn) cannot have atoms.
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Results about atoms II

Suppose that δ?(X1, . . . , Xn) = n.

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17)

Let P ∈ C〈x1, . . . , xn〉 be a selfadjoint non-constant noncommutative
polynomial and consider the selfadjoint operator

Y = P (X1, . . . , Xn).

Then the analytic distribution µY of Y does not have atoms.

Theorem (M., Speicher, Yin , '18)

X = (X1, . . . , Xn) has the strong Atiyah property.

Furthermore, we have:

For each selfadjoint P ∈MN (C〈x1, . . . , xn〉), the measure of each
atom in the analytic distribution µY of the selfadjoint operator
Y = P(X1, . . . , Xn) is an integer multiple of 1

N .

Both location and measure of all atoms are fully determined by P.
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Hölder continuity of polynomials

Suppose that Φ∗(X1, . . . , Xn) <∞.

Theorem (Banna, M. (2018))

Let P ∈ C〈x1, . . . , xn〉 be selfadjoint with degree d ≥ 1 and consider

Y := P (X1, . . . , Xn).

Then there exists some constant C > 0 such that

|FY (t)−FY (s)| ≤ C|t− s|
2

3(2d−1) for all s, t ∈ R.

In fact, for every R > maxi=1,...,n ‖Xi‖, we can take

C =
(
8Φ∗(X)1/2R

) 2
3 ρR(P )

− 2d

3(2d−1) ‖P‖
− 2

3(2d−1)

R

d−1∏
k=1

( d!

(d− k)!

) 2k

3(2d−1) ,

where ‖P‖R and ρR(P ) are quantities that depend only on P and R.
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− 2

3(2d−1)

R

d−1∏
k=1

( d!

(d− k)!

) 2k

3(2d−1) ,

where ‖P‖R and ρR(P ) are quantities that depend only on P and R.
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Polynomial evaluations for GUEs

Corollary (Banna, M. (2018))

Let (X
(N)
1 , . . . , X

(N)
n ) be independent Gaussian random matrices of size

N ×N .

For each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1
.

(ii) There is a constant C > 0 such that

dKol(µY (N) , µ) ≤ CN−
1

13·2d+2−60 for all N ∈ N.

Thank you!
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