Regularity properties of spectral distributions: from free probability to random matrix theory

Tobias Mai

Saarland University

IWOTA 2019

Special Session on "Free Analysis and Free Probability" Instituto Superior Técnico, Lisbon, Portugal

July 25, 2019

erc

Supported by the ERC Advanced Grant "Non-commutative distributions in free probability"

Noncommutative probability spaces

Noncommutative probability spaces

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ with $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Noncommutative probability spaces

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ with $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Definition

A noncommutative probability space (\mathcal{A},ϕ) is called

- C^* -probability space if
 - \mathcal{A} is a unital C*-algebra and
 - ϕ is a state on ${\cal A}$.
- ullet tracial W^* -probability space, if
 - $\blacktriangleright \,\, \mathcal{A}$ is a von Neumann algebra and
 - ϕ is a faithful normal tracial state on ${\cal A}.$

Noncommutative distributions

Noncommutative distributions

Definition ("combinatorial distribution")

Let (\mathcal{A}, ϕ) be a noncommutative probability space. For any given family $X = (X_i)_{i \in I}$ of noncommutative random variables, we call

 $\mu_X: \ \mathbb{C}\langle x_i \mid i \in I \rangle \to \mathbb{C}, \quad x_{i_1} \cdots x_{i_k} \mapsto \phi(X_{i_1} \cdots X_{i_k})$

the (joint) noncommutative distribution of X.

Noncommutative distributions

Definition ("combinatorial distribution")

Let (\mathcal{A}, ϕ) be a noncommutative probability space. For any given family $X = (X_i)_{i \in I}$ of noncommutative random variables, we call

$$\mu_X: \ \mathbb{C}\langle x_i \mid i \in I \rangle \to \mathbb{C}, \quad x_{i_1} \cdots x_{i_k} \mapsto \phi(X_{i_1} \cdots X_{i_k})$$

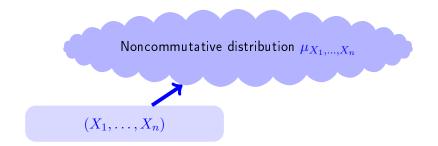
the (joint) noncommutative distribution of X.

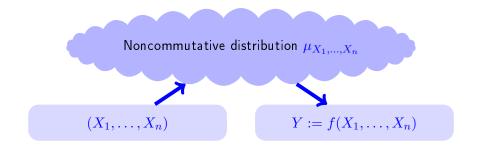
Definition ("analytic distribution")

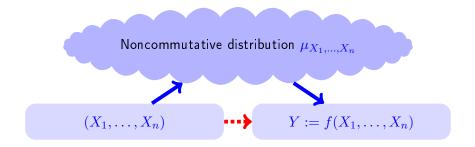
Let (\mathcal{A}, ϕ) be a C^* -probability space. For any given $X = X^* \in \mathcal{A}$, the noncommutative distribution of X can be identified with the unique Borel probability measure μ_X on the real line \mathbb{R} that satisfies

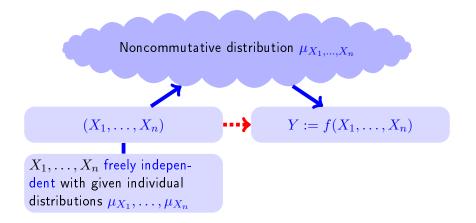
$$\phi(X^k) = \int_{\mathbb{R}} t^k \, d\mu_X(t) \qquad \text{for all integers } k \ge 0.$$

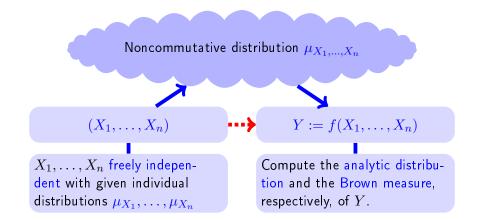
Noncommutative distribution $\mu_{X_1,...,X_n}$











Noncommutative distribution $\mu_{X_1,...,X_n}$

 (X_1,\ldots,X_n)

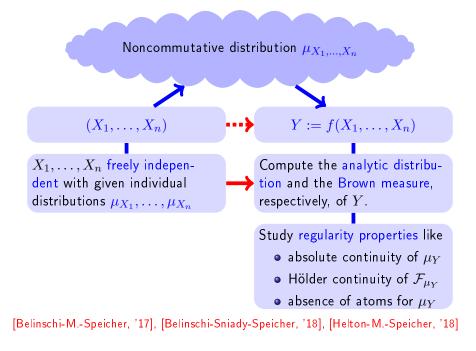
. . . .

 $Y := f(X_1, \ldots, X_n)$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$ Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- Hölder continuity of \mathcal{F}_{μ_Y}
- ullet absence of atoms for μ_Y



 (X_1,\ldots,X_n)

. . . .

 $Y := f(X_1, \ldots, X_n)$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$ Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- Hölder continuity of \mathcal{F}_{μ_Y}
- ullet absence of atoms for μ_Y

[Shlyakhtenko-Skoufranis, '15], [Ajanki-Erdös-Krüger, '16], [Alt-Erdös-Krüger, '18]

Noncommutative distribution $\mu_{X_1,...,X_n}$

 (X_1,\ldots,X_n)

. . . .

 $Y := f(X_1, \ldots, X_n)$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

Regularity conditions such as

• $\Phi^*(X_1,\ldots,X_n) < \infty$

•
$$\chi^*(X_1,\ldots,X_n) > -\infty$$

•
$$\delta^*(X_1,\ldots,X_n)=n$$

Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- Hölder continuity of \mathcal{F}_{μ_Y}
- ullet absence of atoms for μ_Y

. . . .

 $Y := f(X_1, \ldots, X_n)$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

Regularity conditions such as

• $\Phi^*(X_1,\ldots,X_n) < \infty$

•
$$\chi^*(X_1,\ldots,X_n) > -\infty$$

•
$$\delta^*(X_1,\ldots,X_n)=n$$

Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- Hölder continuity of \mathcal{F}_{μ_Y}
- absence of atoms for μ_Y

[Charlesworth-Shlyakhtenko, '16], [M.-Speicher-Weber, '17],

[M.-Speicher-Yin, '18], [Banna-M., '18]

Tobias Mai (Saarland University)

Regularity of spectral distributions

O Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in formal non-commuting indeterminates x_1, \ldots, x_n ; we denote the unital complex algebra consisting of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

1 Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in formal non-commuting indeterminates x_1, \ldots, x_n ; we denote the unital complex algebra consisting of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

2 Matrices of noncommutative polynomials, i.e., elements \mathbf{P} in $M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ for an arbitrary $N \in \mathbb{N}$.

1 Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in formal non-commuting indeterminates x_1, \ldots, x_n ; we denote the unital complex algebra consisting of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

- ② Matrices of noncommutative polynomials, i.e., elements P in $M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ for an arbitrary $N \in \mathbb{N}$.
- Affine linear pencils, i.e., matrices of noncommutative polynomials that are of the particular form

$$\mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n$$

with scalar matrices b_0, b_1, \ldots, b_n of appropriate size.

O Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in formal non-commuting indeterminates x_1, \ldots, x_n ; we denote the unital complex algebra consisting of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

- Matrices of noncommutative polynomials, i.e., elements \mathbf{P} in $M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ for an arbitrary $N \in \mathbb{N}$.
- Affine linear pencils, i.e., matrices of noncommutative polynomials that are of the particular form

$$\mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n$$

with scalar matrices b_0, b_1, \ldots, b_n of appropriate size.

Oncommutative rational functions. i.e., elements of the universal field of fractions C ∉x₁,...,x_n ≯ for C ⟨x₁,...,x_n⟩.

Consider again the (*-)algebra $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials in formal (selfadjoint) variables x_1, \ldots, x_n .

Consider again the (*-)algebra $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials in formal (selfadjoint) variables x_1, \ldots, x_n .

Definition

The noncommutative derivatives are the linear mappings

 $\partial_1, \ldots, \partial_n : \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle \otimes \mathbb{C}\langle x_1, \ldots, x_n \rangle$

which are uniquely determined by the two conditions

- $\partial_j(P_1P_2) = (\partial_j P_1) \cdot P_2 + P_1 \cdot (\partial_j P_2)$ for all $P_1, P_2 \in \mathbb{C}\langle x_1, \dots, x_n \rangle$,
- $\partial_j x_i = \delta_{i,j} 1 \otimes 1$ for $i, j = 1, \dots, n$.

Consider again the (*-)algebra $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials in formal (selfadjoint) variables x_1, \ldots, x_n .

Definition

The noncommutative derivatives are the linear mappings

 $\partial_1, \ldots, \partial_n: \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle \otimes \mathbb{C}\langle x_1, \ldots, x_n \rangle$

which are uniquely determined by the two conditions

• $\partial_j(P_1P_2) = (\partial_j P_1) \cdot P_2 + P_1 \cdot (\partial_j P_2)$ for all $P_1, P_2 \in \mathbb{C}\langle x_1, \dots, x_n \rangle$, • $\partial_j x_i = \delta_{i,j} 1 \otimes 1$ for $i, j = 1, \dots, n$.

 $\mathbb{C}\langle x_1,\ldots,x_n
angle\otimes\mathbb{C}\langle x_1,\ldots,x_n
angle$ becomes a $\mathbb{C}\langle x_1,\ldots,x_n
angle$ -bimodule via $P_1\cdot(Q_1\otimes Q_2)\cdot P_2:=(P_1Q_1)\otimes(Q_2P_2).$

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0, au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1,\ldots,X_n)) = \tau(\xi_j P(X_1,\ldots,X_n)), \quad j = 1,\ldots,n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0, au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0, au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Definition (Voiculescu (1998))

The (non-microstates) free Fisher information is defined by

$$\Phi^*(X_1,\ldots,X_n) := \begin{cases} \sum_{j=1}^n \|\xi_j\|_2^2, & \text{if a conjugate system } (\xi_1,\ldots,\xi_n) \\ & \text{for } (X_1,\ldots,X_n) \text{ exists} \\ & \infty, & \text{otherwise} \end{cases}$$

Lipschitz conjugate variables

Lipschitz conjugate variables Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ with conjugate variables (ξ_1, \ldots, ξ_n) .

Lipschitz conjugate variables Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ with conjugate variables (ξ_1, \ldots, ξ_n) .

Each ∂_j induces a densely defined unbounded linear operator

 $\partial_j: L^2(\mathcal{M}_0, \tau) \supseteq \operatorname{dom}(\partial_j) \to L^2(\mathcal{M}_0 \otimes \mathcal{M}_0, \tau \otimes \tau)$

with domain $\operatorname{dom}(\partial_j) := \mathbb{C}\langle X_1, \ldots, X_n \rangle$;

Lipschitz conjugate variables Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ with conjugate variables (ξ_1, \ldots, ξ_n) .

Each ∂_j induces a densely defined unbounded linear operator

 $\partial_j: L^2(\mathcal{M}_0, \tau) \supseteq \operatorname{dom}(\partial_j) \to L^2(\mathcal{M}_0 \otimes \mathcal{M}_0, \tau \otimes \tau)$

with domain $\operatorname{dom}(\partial_j) := \mathbb{C}\langle X_1, \ldots, X_n \rangle$; its adjoint operator

 $\partial_j^*: L^2(\mathcal{M}_0 \overline{\otimes} \mathcal{M}_0, \tau \overline{\otimes} \tau) \supseteq \operatorname{dom}(\partial_j^*) \to L^2(\mathcal{M}_0, \tau)$

satisfies $1 \otimes 1 \in \operatorname{dom}(\partial_j^*)$ with $\partial_j^*(1 \otimes 1) = \xi_j$.

Lipschitz conjugate variables Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ with conjugate variables (ξ_1, \ldots, ξ_n) . Each ∂_i induces a densely defined unbounded linear operator $\partial_i: L^2(\mathcal{M}_0,\tau) \supseteq \operatorname{dom}(\partial_i) \to L^2(\mathcal{M}_0 \otimes \mathcal{M}_0,\tau \otimes \tau)$ with domain $\operatorname{dom}(\partial_i) := \mathbb{C}\langle X_1, \ldots, X_n \rangle$; its adjoint operator $\partial_i^*: L^2(\mathcal{M}_0 \otimes \mathcal{M}_0, \tau \otimes \tau) \supseteq \operatorname{dom}(\partial_i^*) \to L^2(\mathcal{M}_0, \tau)$ satisfies $1 \otimes 1 \in \operatorname{dom}(\partial_i^*)$ with $\partial_i^*(1 \otimes 1) = \xi_i$. ∂_i^* is densely defined and ∂_i is closable.

Lipschitz conjugate variables Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ with conjugate variables (ξ_1, \ldots, ξ_n) .

Each ∂_j induces a densely defined unbounded linear operator

 $\partial_j: L^2(\mathcal{M}_0, \tau) \supseteq \operatorname{dom}(\partial_j) \to L^2(\mathcal{M}_0 \overline{\otimes} \mathcal{M}_0, \tau \overline{\otimes} \tau)$

with domain $\operatorname{dom}(\partial_j) := \mathbb{C}\langle X_1, \ldots, X_n \rangle$; its adjoint operator

 $\partial_j^*: L^2(\mathcal{M}_0 \overline{\otimes} \mathcal{M}_0, \tau \overline{\otimes} \tau) \supseteq \operatorname{dom}(\partial_j^*) \to L^2(\mathcal{M}_0, \tau)$

satisfies $1 \otimes 1 \in \operatorname{dom}(\partial_i^*)$ with $\partial_i^*(1 \otimes 1) = \xi_j$.

 \implies ∂_i^* is densely defined and ∂_j is closable.

Definition (Dabrowski (2014); Dabrowski & Ioana (2016)) We say that (ξ_1, \ldots, ξ_n) are Lipschitz conjugate variables for X if

 $\xi_j \in \operatorname{dom}(\overline{\partial}_j)$ and $\overline{\partial}_j \xi_j \in \mathcal{M}_0 \overline{\otimes} \mathcal{M}_0$ for $j = 1, \dots, n$.

Consider $Y = Y^*$ in (\mathcal{M}, τ) . Let μ_Y be the analytic distribution of Y and let \mathcal{F}_Y be its cumulative distribution function, i.e., $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$.

Consider $Y = Y^*$ in (\mathcal{M}, τ) . Let μ_Y be the analytic distribution of Y and let \mathcal{F}_Y be its cumulative distribution function, i.e., $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$.

Lemma (M., Speicher, Yin (2018))

If there exist c>0 and $\alpha>1$ such that

 $c \| (Y-s)p \|_2 \ge \| p \|_2^{\alpha}$

for all $s \in \mathbb{R}$ and each spectral projection p of Y, then \mathcal{F}_Y is Hölder continuous with exponent $\beta := \frac{2}{\alpha-1}$; more precisely, we have that

 $|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le c^{\beta} |t - s|^{\beta}$ for all $s, t \in \mathbb{R}$.

Consider $Y = Y^*$ in (\mathcal{M}, τ) . Let μ_Y be the analytic distribution of Y and let \mathcal{F}_Y be its cumulative distribution function, i.e., $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$.

Lemma (M., Speicher, Yin (2018))

If there exist c>0 and $\alpha>1$ such that

 $c \| (Y-s)p \|_2 \ge \| p \|_2^{\alpha}$

for all $s \in \mathbb{R}$ and each spectral projection p of Y, then \mathcal{F}_Y is Hölder continuous with exponent $\beta := \frac{2}{\alpha-1}$; more precisely, we have that

 $|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le c^{\beta} |t - s|^{\beta}$ for all $s, t \in \mathbb{R}$.

Proof – following ideas of [Charlesworth, Shlyakhtenko (2016)]. Take $p = E_Y((s,t])$ for the spectral measure E_Y of Y and observe that $\|p\|_2 = \mu_Y((s,t])^{1/2}$ and $\|(Y-s)p\|_2 \le |t-s|\mu_Y((s,t])^{1/2}$.

Theorem (Banna, M. (2018))

Let $P \in \mathbb{C}\langle x_1, \dots, x_n
angle$ be selfadjoint with degree $d \geq 1$ and consider

 $Y := P(X_1, \ldots, X_n).$

• Suppose that $\Phi^*(X_1,\ldots,X_n) < \infty$. Then there exists some constant C > 0 such that

$$\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{rac{2}{3(2^d-1)}}$$
 for all $s, t \in \mathbb{R}$.

Theorem (Banna, M. (2018))

Let $P \in \mathbb{C}\langle x_1, \dots, x_n
angle$ be selfadjoint with degree $d \geq 1$ and consider

 $Y := P(X_1, \ldots, X_n).$

• Suppose that $\Phi^*(X_1,\ldots,X_n) < \infty$. Then there exists some constant C > 0 such that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{3(2^d - 1)}} \quad \text{for all } s, t \in \mathbb{R}.$$

2 If (X_1, \ldots, X_n) admits even Lipschitz conjugate variables, then there exists some constant C' > 0 such that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C' |t-s|^{rac{1}{2^d-1}}$$
 for all $s, t \in \mathbb{R}$.

Theorem (Banna, M. (2018))

Let $P \in \mathbb{C}\langle x_1, \dots, x_n
angle$ be selfadjoint with degree $d \geq 1$ and consider

 $Y := P(X_1, \ldots, X_n).$

• Suppose that $\Phi^*(X_1,\ldots,X_n) < \infty$. Then there exists some constant C > 0 such that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{3(2^d - 1)}} \quad \text{for all } s, t \in \mathbb{R}.$$

2 If (X_1, \ldots, X_n) admits even Lipschitz conjugate variables, then there exists some constant C' > 0 such that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C' |t-s|^{rac{1}{2^d-1}} \qquad ext{for all } s,t\in\mathbb{R}$$

In fact, we can give explicit values for the constants C and C'.

Tobias Mai (Saarland University)

Regularity of spectral distributions

Random matrices and their eigenvalue distributions

Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

 $\mathcal{A}_N := M_N(L^{\infty-}(\Omega, \mathbb{P})), \quad \text{where} \quad L^{\infty-}(\Omega, \mathbb{P}) := \bigcap_{1 \leq p < \infty} L^p(\Omega, \mathbb{P})$

are called random matrices.

Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

 $\mathcal{A}_N := M_N(L^{\infty-}(\Omega,\mathbb{P})), \quad \text{where} \quad L^{\infty-}(\Omega,\mathbb{P}) := \bigcap_{1 \leq p < \infty} L^p(\Omega,\mathbb{P})$

are called random matrices.

Definition (Empirical eigenvalue distribution)

Given $X \in A_N$, the empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} = \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)},$$

where $\lambda_1(\omega),\ldots,\lambda_N(\omega)$ are the eigenvalues of $X(\omega)$ with multiplicities.

A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

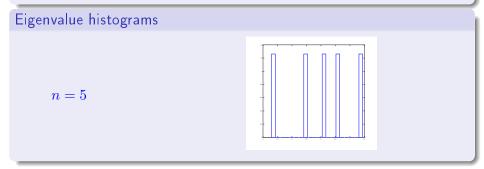
 $\mathbb{E}[X_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|X_{k,l}|^2] = N^{-1} \quad \text{for } 1 \le k \le l \le N.$

A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0$$
 and $\mathbb{E}[|X_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.

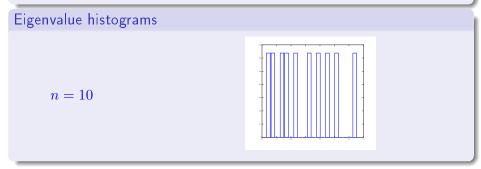


A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0$$
 and $\mathbb{E}[|X_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.



Tobias Mai (Saarland University)

A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0$$
 and $\mathbb{E}[|X_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.

Eigenvalue histograms n = 100

Tobias Mai (Saarland University)

Regularity of spectral distributions

A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0$$
 and $\mathbb{E}[|X_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.

Eigenvalue histograms

n = 1000

A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

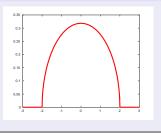
 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}]=0$$
 and $\mathbb{E}[|X_{k,l}|^2]=N^{-1}$ for $1\leq k\leq l\leq N.$

Eigenvalue histograms

 $n \to \infty$



A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0$$
 and $\mathbb{E}[|X_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.

Theorem (Wigner (1955/1958))

Let $(X^{(N)})_{N \in \mathbb{N}}$ be a sequence of self-adjoint Gaussian random matrices $X^{(N)} \in \mathcal{A}_N$. Then, for all $k \in \mathbb{N}_0$, it holds true that

$$\lim_{n \to \infty} \mathbb{E} \Big[\int_{\mathbb{R}} t^k \, d\mu_{X_n}(t) \Big] = \int_{\mathbb{R}} t^k \, d\mu_S(t)$$

for the semicircular distribution $d\mu_S(t) = \frac{1}{2\pi}\sqrt{4-t^2}\,\mathbf{1}_{[-2,2]}(t)\,dt.$

A standard Gaussian random matrix (of size $N \times N$) is a hermitian random matrix $X = (X_{k,l})_{k,l=1}^N \in \mathcal{A}_N$ for which

 $\{\operatorname{Re}(X_{k,l}) \mid 1 \le k \le l \le N\} \cup \{\operatorname{Im}(X_{k,l}) \mid 1 \le k < l \le N\}$

are independent Gaussian random variables such that

$$\mathbb{E}[X_{k,l}] = 0$$
 and $\mathbb{E}[|X_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.

Theorem (Wigner (1955/1958) & Arnold (1967))

Let $(X^{(N)})_{N\in\mathbb{N}}$ be a sequence of self-adjoint Gaussian random matrices $X^{(N)}\in\mathcal{A}_N$. Then, for all $k\in\mathbb{N}_0$, it holds true that

$$\lim_{n o \infty} \int_{\mathbb{R}} t^k \, d\mu_{X_n}(t) = \int_{\mathbb{R}} t^k \, d\mu_S(t)$$
 almost surely

for the semicircular distribution $d\mu_S(t) = \frac{1}{2\pi}\sqrt{4-t^2} \, \mathbbm{1}_{[-2,2]}(t) \, dt.$

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991))

For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \mathbb{E}[\operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)}))] = \phi(P(S_1, \dots, S_n))$

for freely independent semicircular elements S_1, \ldots, S_n in some noncommutative probability space (\mathcal{A}, ϕ) .

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \phi(P(S_1, \dots, S_n)) \quad \text{almost surely}$

for freely independent semicircular elements S_1, \ldots, S_n in some noncommutative probability space (\mathcal{A}, ϕ) .

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \phi(P(S_1, \dots, S_n)) \quad \text{almost surely}$

for freely independent semicircular elements S_1, \ldots, S_n in some noncommutative probability space (\mathcal{A}, ϕ) .

This means: Asymptotic freeness relates (in this case)

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(S_1, ..., S_n)$ for freely independent semicircular elements $S_1, ..., S_n$.

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all $N \in \mathbb{N}$, realize independent standard Gaussian random matrices $X_1^{(N)}, \ldots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \phi(P(S_1, \dots, S_n)) \quad \text{almost surely}$

for freely independent semicircular elements S_1, \ldots, S_n in some noncommutative probability space (\mathcal{A}, ϕ) .

This means: Asymptotic freeness relates (in this case)

- the limiting eigenvalue distribution of $Y^{(N)} = P(X_1^{(N)}, \dots, X_n^{(N)})$ and
- the distribution of $Y = P(S_1, ..., S_n)$ for freely independent semicircular elements $S_1, ..., S_n$.
- Note that (S_1, \ldots, S_n) has Lipschitz conjugate variables.

Gibbs laws and the Schwinger-Dyson equation

Gibbs laws and the Schwinger-Dyson equation

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ following the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))} dX_1^{(N)} \dots dX_n^{(N)}$$

Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \tau(P(X_1, \dots, X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation with potential V.

Gibbs laws and the Schwinger-Dyson equation

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ following the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))} \, dX_1^{(N)} \, \dots \, dX_n^{(N)}$$

Then, for all $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$,

 $\lim_{N \to \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \tau(P(X_1, \dots, X_n)) \quad \text{almost surely}$

for selfadjoint operators X_1, \ldots, X_n in some W^* -probability space (\mathcal{M}, τ) that satisfy the Schwinger-Dyson equation with potential V.

Bue to the Schwinger-Dyson equation, (X_1, \ldots, X_n) has Lipschitz conjugate variables; they are given by $\xi_j = (\mathcal{D}_j V)(X_1, \ldots, X_n)$.

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))} dX_1^{(N)} \dots dX_n^{(N)}$$

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))} dX_1^{(N)} \dots dX_n^{(N)}$$

Then, for each selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ of degree $d \geq 1$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))} dX_1^{(N)} \dots dX_n^{(N)}$$

Then, for each selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ of degree $d \geq 1$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

(ii) We have almost surely that

$$d_{\mathrm{Kol}}(\mu_{Y^{(N)}},\mu)\to 0 \qquad \text{as } N\to\infty.$$

Corollary (Banna, M. (2018))

Let $(X_1^{(N)},\ldots,X_n^{(N)})$ be independent Gaussian random matrices of size $N\times N.$

Corollary (Banna, M. (2018))

Let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be independent Gaussian random matrices of size $N \times N$. For each selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ of degree $d \ge 1$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

 $Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

Corollary (Banna, M. (2018))

Let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be independent Gaussian random matrices of size $N \times N$. For each selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ of degree $d \ge 1$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

 $Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

(ii) There is a constant C>0 such that for $\overline{\mu}_{Y^{(N)}}:=\mathbb{E}[\mu_{Y^{(N)}}]$

$$d_{\operatorname{Kol}}(\overline{\mu}_{Y^{(N)}},\mu) \leq CN^{-rac{1}{13\cdot 2^{d+2}-60}} \qquad ext{for all } N\in\mathbb{N}.$$

Corollary (Banna, M. (2018))

Let $(X_1^{(N)}, \ldots, X_n^{(N)})$ be independent Gaussian random matrices of size $N \times N$. For each selfadjoint $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ of degree $d \ge 1$, we have: (i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

 $Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$

converges in distribution almost surely to a compactly supported Borel probability measure μ on \mathbb{R} with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

(ii) There is a constant C>0 such that for $\overline{\mu}_{Y^{(N)}}:=\mathbb{E}[\mu_{Y^{(N)}}]$

$$d_{\operatorname{Kol}}(\overline{\mu}_{Y^{(N)}},\mu) \leq CN^{-rac{1}{13\cdot 2^{d+2}-60}} \qquad ext{for all } N\in\mathbb{N}.$$