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Noncommutative probability spaces

De�nition

A noncommutative probability space (A, φ) consists of

a complex algebra A with unit 1A and

a linear functional φ : A → C with φ(1A) = 1 (expectation).

Elements X ∈ A are called noncommutative random variables.

De�nition

A noncommutative probability space (A, φ) is called

C∗-probability space if
I A is a unital C∗-algebra and
I φ is a state on A.

tracial W ∗-probability space, if
I A is a von Neumann algebra and
I φ is a faithful normal tracial state on A.
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Noncommutative distributions

De�nition (�combinatorial distribution�)

Let (A, φ) be a noncommutative probability space. For any given family

X = (Xi)i∈I of noncommutative random variables, we call

µX : C〈xi | i ∈ I〉 → C, xi1 · · ·xik 7→ φ(Xi1 · · ·Xik)

the (joint) noncommutative distribution of X.

De�nition (�analytic distribution�)

Let (A, φ) be a C∗-probability space. For any given X = X∗ ∈ A, the
noncommutative distribution of X can be identi�ed with the unique Borel

probability measure µX on the real line R that satis�es

φ(Xk) =

∫
R
tk dµX(t) for all integers k ≥ 0.
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Noncommutative distribution µX1,...,Xn

(X1, . . . , Xn)

X1, . . . , Xn freely indepen-

dent with given individual

distributions µX1 , . . . , µXn

Regularity conditions such as

Φ∗(X1, . . . , Xn) <∞
χ∗(X1, . . . , Xn) > −∞
δ∗(X1, . . . , Xn) = n

Y := f(X1, . . . , Xn)

Compute the analytic distribu-

tion and the Brown measure,

respectively, of Y .

Study regularity properties like

absolute continuity of µY

Hölder continuity of FµY
absence of atoms for µY
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Important classes of �noncommutative test functions�

1 Noncommutative polynomials, i.e., expressions of the form

P = a0 +
d∑

k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in formal non-commuting indeterminates x1, . . . , xn; we denote the

unital complex algebra consisting of all noncommutative polynomials

by C〈x1, . . . , xn〉.
2 Matrices of noncommutative polynomials, i.e., elements P in

MN (C〈x1, . . . , xn〉) for an arbitrary N ∈ N.
3 A�ne linear pencils, i.e., matrices of noncommutative polynomials

that are of the particular form

P = b0 + b1x1 + · · ·+ bnxn

with scalar matrices b0, b1, . . . , bn of appropriate size.
4 Noncommutative rational functions. i.e., elements of the universal

�eld of fractions C (<x1, . . . , xn )> for C〈x1, . . . , xn〉.

Tobias Mai (Saarland University) Regularity of spectral distributions July 25, 2019 5 / 16



Important classes of �noncommutative test functions�

1 Noncommutative polynomials, i.e., expressions of the form

P = a0 +

d∑
k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in formal non-commuting indeterminates x1, . . . , xn; we denote the

unital complex algebra consisting of all noncommutative polynomials

by C〈x1, . . . , xn〉.

2 Matrices of noncommutative polynomials, i.e., elements P in

MN (C〈x1, . . . , xn〉) for an arbitrary N ∈ N.
3 A�ne linear pencils, i.e., matrices of noncommutative polynomials

that are of the particular form

P = b0 + b1x1 + · · ·+ bnxn

with scalar matrices b0, b1, . . . , bn of appropriate size.
4 Noncommutative rational functions. i.e., elements of the universal

�eld of fractions C (<x1, . . . , xn )> for C〈x1, . . . , xn〉.

Tobias Mai (Saarland University) Regularity of spectral distributions July 25, 2019 5 / 16



Important classes of �noncommutative test functions�

1 Noncommutative polynomials, i.e., expressions of the form

P = a0 +

d∑
k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in formal non-commuting indeterminates x1, . . . , xn; we denote the

unital complex algebra consisting of all noncommutative polynomials

by C〈x1, . . . , xn〉.
2 Matrices of noncommutative polynomials, i.e., elements P in

MN (C〈x1, . . . , xn〉) for an arbitrary N ∈ N.

3 A�ne linear pencils, i.e., matrices of noncommutative polynomials

that are of the particular form

P = b0 + b1x1 + · · ·+ bnxn

with scalar matrices b0, b1, . . . , bn of appropriate size.
4 Noncommutative rational functions. i.e., elements of the universal

�eld of fractions C (<x1, . . . , xn )> for C〈x1, . . . , xn〉.

Tobias Mai (Saarland University) Regularity of spectral distributions July 25, 2019 5 / 16



Important classes of �noncommutative test functions�

1 Noncommutative polynomials, i.e., expressions of the form

P = a0 +

d∑
k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in formal non-commuting indeterminates x1, . . . , xn; we denote the

unital complex algebra consisting of all noncommutative polynomials

by C〈x1, . . . , xn〉.
2 Matrices of noncommutative polynomials, i.e., elements P in

MN (C〈x1, . . . , xn〉) for an arbitrary N ∈ N.
3 A�ne linear pencils, i.e., matrices of noncommutative polynomials

that are of the particular form

P = b0 + b1x1 + · · ·+ bnxn

with scalar matrices b0, b1, . . . , bn of appropriate size.

4 Noncommutative rational functions. i.e., elements of the universal

�eld of fractions C (<x1, . . . , xn )> for C〈x1, . . . , xn〉.

Tobias Mai (Saarland University) Regularity of spectral distributions July 25, 2019 5 / 16



Important classes of �noncommutative test functions�

1 Noncommutative polynomials, i.e., expressions of the form

P = a0 +

d∑
k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in formal non-commuting indeterminates x1, . . . , xn; we denote the

unital complex algebra consisting of all noncommutative polynomials

by C〈x1, . . . , xn〉.
2 Matrices of noncommutative polynomials, i.e., elements P in

MN (C〈x1, . . . , xn〉) for an arbitrary N ∈ N.
3 A�ne linear pencils, i.e., matrices of noncommutative polynomials

that are of the particular form

P = b0 + b1x1 + · · ·+ bnxn

with scalar matrices b0, b1, . . . , bn of appropriate size.
4 Noncommutative rational functions. i.e., elements of the universal

�eld of fractions C (<x1, . . . , xn )> for C〈x1, . . . , xn〉.
Tobias Mai (Saarland University) Regularity of spectral distributions July 25, 2019 5 / 16



Noncommutative derivatives

Consider again the (∗-)algebra C〈x1, . . . , xn〉 of noncommutative

polynomials in formal (selfadjoint) variables x1, . . . , xn.

De�nition

The noncommutative derivatives are the linear mappings

∂1, . . . , ∂n : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

which are uniquely determined by the two conditions

∂j(P1P2) = (∂jP1) · P2 + P1 · (∂jP2) for all P1, P2 ∈ C〈x1, . . . , xn〉,
∂jxi = δi,j1⊗ 1 for i, j = 1, . . . , n.

C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉 becomes a C〈x1, . . . , xn〉-bimodule via

P1 · (Q1 ⊗Q2) · P2 := (P1Q1)⊗ (Q2P2).
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Conjugate variables and free Fisher information

Let (M, τ) be a tracial W ∗-probability space and consider any selfadjoint

operators X1, . . . , Xn ∈M; we putM0 := vN(X1, . . . , Xn).

De�nition (Voiculescu (1998))

If ξ1, . . . , ξn ∈ L2(M0, τ) are such that for all P ∈ C〈x1, . . . , xn〉

(τ ⊗ τ)((∂jP )(X1, . . . , Xn)) = τ(ξjP (X1, . . . , Xn)), j = 1, . . . , n,

then (ξ1, . . . , ξn) is called the conjugate system for (X1, . . . , Xn).

De�nition (Voiculescu (1998))

The (non-microstates) free Fisher information is de�ned by

Φ∗(X1, . . . , Xn) :=


n∑
j=1

‖ξj‖22,
if a conjugate system (ξ1, . . . , ξn)
for (X1, . . . , Xn) exists

∞, otherwise
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Lipschitz conjugate variables

Suppose that Φ∗(X1, . . . , Xn) <∞ with conjugate variables (ξ1, . . . , ξn).

Each ∂j induces a densely de�ned unbounded linear operator

∂j : L2(M0, τ) ⊇ dom(∂j)→ L2(M0 ⊗M0, τ ⊗ τ)

with domain dom(∂j) := C〈X1, . . . , Xn〉;

its adjoint operator

∂∗j : L2(M0 ⊗M0, τ ⊗ τ) ⊇ dom(∂∗j )→ L2(M0, τ)

satis�es 1⊗ 1 ∈ dom(∂∗j ) with ∂∗j (1⊗ 1) = ξj .

=⇒ ∂∗j is densely de�ned and ∂j is closable.

De�nition (Dabrowski (2014); Dabrowski & Ioana (2016))

We say that (ξ1, . . . , ξn) are Lipschitz conjugate variables for X if

ξj ∈ dom(∂j) and ∂jξj ∈M0 ⊗M0 for j = 1, . . . , n.
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Hölder continuity: a criterion

Consider Y = Y ∗ in (M, τ). Let µY be the analytic distribution of Y and

let FY be its cumulative distribution function, i.e., FY (t) := µY ((−∞, t]).

Lemma (M., Speicher, Yin (2018))

If there exist c > 0 and α > 1 such that

c‖(Y − s)p‖2 ≥ ‖p‖α2

for all s ∈ R and each spectral projection p of Y , then FY is Hölder
continuous with exponent β := 2

α−1 ; more precisely, we have that

|FY (t)−FY (s)| ≤ cβ|t− s|β for all s, t ∈ R.

Proof � following ideas of [Charlesworth, Shlyakhtenko (2016)].

Take p = EY ((s, t]) for the spectral measure EY of Y and observe that

‖p‖2 = µY ((s, t])1/2 and ‖(Y − s)p‖2 ≤ |t− s|µY ((s, t])1/2.
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Hölder continuity of polynomials

Theorem (Banna, M. (2018))

Let P ∈ C〈x1, . . . , xn〉 be selfadjoint with degree d ≥ 1 and consider

Y := P (X1, . . . , Xn).

1 Suppose that Φ∗(X1, . . . , Xn) <∞. Then there exists some constant

C > 0 such that

|FY (t)−FY (s)| ≤ C|t− s|
2

3(2d−1) for all s, t ∈ R.

2 If (X1, . . . , Xn) admits even Lipschitz conjugate variables, then there

exists some constant C ′ > 0 such that

|FY (t)−FY (s)| ≤ C ′|t− s|
1

2d−1 for all s, t ∈ R.

In fact, we can give explicit values for the constants C and C ′.
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Random matrices and their eigenvalue distributions

De�nition (Random matrices)

Let (Ω,F ,P) be a probability space. Elements in the complex ∗-algebra

AN := MN (L∞−(Ω,P)), where L∞−(Ω,P) :=
⋂

1≤p<∞
Lp(Ω,P)

are called random matrices.

De�nition (Empirical eigenvalue distribution)

Given X ∈ AN , the empirical eigenvalue distribution of X is the random

probability measure µX on C that is given by

ω 7→ µX(ω) =
1

N

N∑
j=1

δλj(ω),

where λ1(ω), . . . , λN (ω) are the eigenvalues of X(ω) with multiplicities.
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Standard Gaussian random matrices

A standard Gaussian random matrix (of size N ×N) is a hermitian random

matrix X = (Xk,l)
N
k,l=1 ∈ AN for which

{Re(Xk,l) | 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l) | 1 ≤ k < l ≤ N}

are independent Gaussian random variables such that

E[Xk,l] = 0 and E[|Xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.
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Standard Gaussian random matrices

A standard Gaussian random matrix (of size N ×N) is a hermitian random

matrix X = (Xk,l)
N
k,l=1 ∈ AN for which

{Re(Xk,l) | 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l) | 1 ≤ k < l ≤ N}

are independent Gaussian random variables such that

E[Xk,l] = 0 and E[|Xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.

Eigenvalue histograms
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Standard Gaussian random matrices

A standard Gaussian random matrix (of size N ×N) is a hermitian random

matrix X = (Xk,l)
N
k,l=1 ∈ AN for which

{Re(Xk,l) | 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l) | 1 ≤ k < l ≤ N}

are independent Gaussian random variables such that
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Standard Gaussian random matrices

A standard Gaussian random matrix (of size N ×N) is a hermitian random
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k,l=1 ∈ AN for which
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Standard Gaussian random matrices

A standard Gaussian random matrix (of size N ×N) is a hermitian random

matrix X = (Xk,l)
N
k,l=1 ∈ AN for which

{Re(Xk,l) | 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l) | 1 ≤ k < l ≤ N}

are independent Gaussian random variables such that

E[Xk,l] = 0 and E[|Xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.

Eigenvalue histograms

n→∞

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Tobias Mai (Saarland University) Regularity of spectral distributions July 25, 2019 12 / 16



Standard Gaussian random matrices

A standard Gaussian random matrix (of size N ×N) is a hermitian random

matrix X = (Xk,l)
N
k,l=1 ∈ AN for which

{Re(Xk,l) | 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l) | 1 ≤ k < l ≤ N}

are independent Gaussian random variables such that

E[Xk,l] = 0 and E[|Xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.

Theorem (Wigner (1955/1958))

Let (X(N))N∈N be a sequence of self-adjoint Gaussian random matrices

X(N) ∈ AN . Then, for all k ∈ N0, it holds true that

lim
n→∞

E
[ ∫

R
tk dµXn(t)

]
=

∫
R
tk dµS(t)

for the semicircular distribution dµS(t) = 1
2π

√
4− t2 1[−2,2](t) dt.
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Theorem (Wigner (1955/1958) & Arnold (1967))

Let (X(N))N∈N be a sequence of self-adjoint Gaussian random matrices

X(N) ∈ AN . Then, for all k ∈ N0, it holds true that

lim
n→∞

∫
R
tk dµXn(t) =

∫
R
tk dµS(t) almost surely

for the semicircular distribution dµS(t) = 1
2π

√
4− t2 1[−2,2](t) dt.
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Asymptotic freeness of random matrices

This means: Asymptotic freeness relates (in this case)

the limiting eigenvalue distribution of Y (N) = P (X
(N)
1 , . . . , X

(N)
n ) and

the distribution of Y = P (S1, . . . , Sn) for freely independent

semicircular elements S1, . . . , Sn.

+ Note that (S1, . . . , Sn) has Lipschitz conjugate variables.
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Asymptotic freeness of random matrices
We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991))

For all N ∈ N, realize independent standard Gaussian random matrices

X
(N)
1 , . . . , X

(N)
n ∈ AN . Then, for all P ∈ C〈x1, . . . , xn〉,

lim
N→∞

E[trN (P (X
(N)
1 , . . . , X(N)

n ))] = φ(P (S1, . . . , Sn))

for freely independent semicircular elements S1, . . . , Sn in some

noncommutative probability space (A, φ).

This means: Asymptotic freeness relates (in this case)

the limiting eigenvalue distribution of Y (N) = P (X
(N)
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(N)
n ) and
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Asymptotic freeness of random matrices
We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))
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Gibbs laws and the Schwinger-Dyson equation

Theorem (Guionnet, Shlyakhtenko (2009))

Let V ∈ C〈x1, . . . , xn〉 be �nice� and let (X
(N)
1 , . . . , X

(N)
n ) be random

matrices of size N ×N following the Gibbs law

dΛVN (X
(N)
1 , . . . , X(N)

n ) =
1

ZVN
e−N Tr(V (X

(N)
1 ,...,X

(N)
n )) dX

(N)
1 . . . dX(N)

n .

Then, for all P ∈ C〈x1, . . . , xn〉,

lim
N→∞

trN (P (X
(N)
1 , . . . , X(N)

n )) = τ(P (X1, . . . , Xn)) almost surely

for selfadjoint operators X1, . . . , Xn in some W ∗-probability space (M, τ)
that satisfy the Schwinger-Dyson equation with potential V .

+ Due to the Schwinger-Dyson equation, (X1, . . . , Xn) has Lipschitz

conjugate variables; they are given by ξj = (DjV )(X1, . . . , Xn).
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Polynomial evaluations for Gibbs laws

Corollary (Banna, M. (2018))

Let V ∈ C〈x1, . . . , xn〉 be �nice� and let (X
(N)
1 , . . . , X

(N)
n ) be random

matrices of size N ×N distributed according to the Gibbs law

dΛVN (X
(N)
1 , . . . , X(N)

n ) =
1

ZVN
e−N Tr(V (X

(N)
1 ,...,X

(N)
n )) dX

(N)
1 . . . dX(N)

n .

Then, for each selfadjoint P ∈ C〈x1, . . . , xn〉 of degree d ≥ 1, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1 .

(ii) We have almost surely that

dKol(µY (N) , µ)→ 0 as N →∞.
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Polynomial evaluations for GUEs

Corollary (Banna, M. (2018))

Let (X
(N)
1 , . . . , X

(N)
n ) be independent Gaussian random matrices of size

N ×N .

For each selfadjoint P ∈ C〈x1, . . . , xn〉 of degree d ≥ 1, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1 .

(ii) There is a constant C > 0 such that for µY (N) := E[µY (N) ]

dKol(µY (N) , µ) ≤ CN−
1

13·2d+2−60 for all N ∈ N.

Thank you!
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