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The asymptotics of independent Gaussian random matrices Selfadjoint Gaussian random matrices

Selfadjoint Gaussian random matrices

A standard selfadjoint Gaussian random matrix is a selfadjoint random
matrix X = (Xk,l)

N
k,l=1, for which

{Re(Xk,l)| 1 ≤ k ≤ l ≤ N} ∪ {Im(Xk,l)| 1 ≤ k < l ≤ N}

are independent centered Gaussian random variables, such that

E[Re(Xk,k)
2] = 1

N for 1 ≤ k ≤ N and

E[Re(Xk,l)
2] = E[Im(Xk,l)

2] = 1
2N for 1 ≤ k < l ≤ N.

The law of a standard selfadjoint Gaussian random matrix XN is the

probability measure µN on MN (C)sa
∼= RN2

that is determined by

dµN (X) :=
1

ZN
e−

N
2

TrN (X2) dX with ZN := 2
N
2

( π
N

)N2

2

and dX :=
∏N
k=1 dXk,k

∏
1≤k<l≤N d Re(Xk,l) d Im(Xk,l).
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The asymptotics of independent Gaussian random matrices Wigner's theorem

Asymptotics of the empirical eigenvalue distribution

Empirical eigenvalue distribution

µXN =
1

N

N∑
j=1

δλj(XN )

with λ1(XN ), . . . , λN (XN ) being the
random eigenvalues of XN .
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Asymptotics of the empirical eigenvalue distribution

Empirical eigenvalue distribution

µXN =
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Theorem (Wigner (1955/1958))

Consider (XN )N∈N. For all k ∈ N0, it holds true that

lim
N→∞

E
[ ∫

R
tk dµXN (t)

]
=

∫
R
tk dσ(t)

for the semicircular distribution dσ(t) = 1
2π

√
4− t2 1[−2,2](t) dt.
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lim
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∫
R
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The asymptotics of independent Gaussian random matrices A change of perspective

A change of perspective I

A tracial W ∗-probability space is a tuple (M, τ) consisting of

a von Neumann algebraM, (nc random variables)

a faithful normal tracial state τ :M→ C. (expectation)

Example

(L∞(Ω,P),E), where (Ω,F ,P) is a classical probability space and E
the usual expectation that is given by E[X] =

∫
ΩX(ω) dP(ω).

(MN (C), trN ), where trN is the normalized trace on MN (C).

For X = X∗ ∈M, let EX be the associated resolution of the identity. The
Borel probability measure µX := τ ◦ EX is called the (analytic) distribution
of X; it is uniquely determined by

τ(Xk) =

∫
R
tk dµX(t) for all k ∈ N0.
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The asymptotics of independent Gaussian random matrices A change of perspective

A change of perspective II

A noncommutative random variable S = S∗

in (M, τ) with µS = σ, where

dσ(t) =
1

2π

√
4− t2 1[−2,2](t) dt,

is called (standard) semicircular element. -3 -2 -1 0 1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

In other words: XN dist−→ S almost surely as N →∞
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The asymptotics of independent Gaussian random matrices A change of perspective

A change of perspective III

Let H be a complex Hilbert space; the full Fock space over H is

F(H) :=

∞⊕
n=0

H⊗n with H⊗n := CΩ.

For ξ ∈ H, the left creation operator lξ ∈ B(F(H)) is determined by

lξ(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn and lξΩ = ξ.

Its adjoint is the left annihilation operator l∗ξ ∈ B(F(H)).

Let ξ1, . . . , ξd be a orthonormal system in H. We put Si := lξi + l∗ξi for
i = 1, . . . , d and

M := W ∗(S1, . . . , Sd) ⊂ B(F(H)) and τ :M→ C, X 7→ 〈XΩ,Ω〉.

Then (M, τ) is a tracial W ∗-probability space and S1, . . . , Sd are freely
independent semicircular elements.
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The asymptotics of independent Gaussian random matrices Voiculescu's theorem

Voiculescu's multivariate extension of Wigner's theorem

In other words: XN dist−→ S almost surely as N →∞

By C〈x1, . . . , xd〉, we denote the algebra of noncommutative polynomials

p = a0 +
m∑
k=1

d∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik .

in the (formal) noncommuting indeterminates x1, . . . , xd.
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Voiculescu's multivariate extension of Wigner's theorem

Theorem (Voiculescu (1991))

Consider (XN )N∈N for d-tuples XN = (XN
1 , . . . , X

N
d ) of independent

standard selfadjoint Gaussian random matrices. For all noncommutative
polynomials p ∈ C〈x1, . . . , xd〉, it holds true that

lim
N→∞

E[trN (p(XN
1 , . . . , X

N
d ))] = τ(p(S1, . . . , Sd))

for freely independent semicircular elements S1, . . . , Sd in (M, τ).
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Evaluations of noncommutative rational functions The central question

From noncommutative polynomials to rational functions

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all noncommutative polynomials p ∈ C〈x1, . . . , xd〉, it holds true that

lim
N→∞

trN (p(XN
1 , . . . , X

N
d )) = τ(p(S1, . . . , Sd)) almost surely.

+ Noncommutative polynomials p ∈ C〈x1, . . . , xd〉 are built in an
iterative manner out of C and the variables x1, . . . , xd by the
arithmetic operations addition and multiplication.

Question (Speicher (2019))

What happens if we allow also inverses, i.e., if we pass from the class of
noncommutative polynomials to noncommutative rational functions?

+ Previous results concern the particular case of bounded evaluations
such as (1− iS1)−1S2(1 + iS1)−1;
see [Yin (2018)] and [Erd®s, Krüger, Nemish (2020)].
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Evaluations of noncommutative rational functions Noncommutative rational functions

Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the
free �eld C (<x1, . . . , xd )>.

Formally, C (<x1, . . . , xd )> is the universal �eld of fractions for the ring
C〈x1, . . . , xd〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, . . .

But what does this actually mean?

+ Noncommutative rational functions r ∈ C (<x1, . . . , xd )> are built,
loosely speaking, out of C and the variables x1, . . . , xd by successive
applications of the arithmetic operations addition, multiplication, and
inversion.

+ They can be realized as equivalence classes of noncommutative
rational expressions which are non-degenerate.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 9 / 23



Evaluations of noncommutative rational functions Noncommutative rational functions

Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the
free �eld C (<x1, . . . , xd )>.

Formally, C (<x1, . . . , xd )> is the universal �eld of fractions for the ring
C〈x1, . . . , xd〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, . . .

But what does this actually mean?

+ Noncommutative rational functions r ∈ C (<x1, . . . , xd )> are built,
loosely speaking, out of C and the variables x1, . . . , xd by successive
applications of the arithmetic operations addition, multiplication, and
inversion.

+ They can be realized as equivalence classes of noncommutative
rational expressions which are non-degenerate.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 9 / 23



Evaluations of noncommutative rational functions Noncommutative rational functions

Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the
free �eld C (<x1, . . . , xd )>.

Formally, C (<x1, . . . , xd )> is the universal �eld of fractions for the ring
C〈x1, . . . , xd〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, . . .

But what does this actually mean?

+ Noncommutative rational functions r ∈ C (<x1, . . . , xd )> are built,
loosely speaking, out of C and the variables x1, . . . , xd by successive
applications of the arithmetic operations addition, multiplication, and
inversion.

+ They can be realized as equivalence classes of noncommutative
rational expressions which are non-degenerate.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 9 / 23



Evaluations of noncommutative rational functions Noncommutative rational functions

Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the
free �eld C (<x1, . . . , xd )>.

Formally, C (<x1, . . . , xd )> is the universal �eld of fractions for the ring
C〈x1, . . . , xd〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, . . .

But what does this actually mean?

+ Noncommutative rational functions r ∈ C (<x1, . . . , xd )> are built,
loosely speaking, out of C and the variables x1, . . . , xd by successive
applications of the arithmetic operations addition, multiplication, and
inversion.

+ They can be realized as equivalence classes of noncommutative
rational expressions which are non-degenerate.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 9 / 23



Evaluations of noncommutative rational functions Noncommutative rational functions

Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the
free �eld C (<x1, . . . , xd )>.

Formally, C (<x1, . . . , xd )> is the universal �eld of fractions for the ring
C〈x1, . . . , xd〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, . . .

But what does this actually mean?

+ Noncommutative rational functions r ∈ C (<x1, . . . , xd )> are built,
loosely speaking, out of C and the variables x1, . . . , xd by successive
applications of the arithmetic operations addition, multiplication, and
inversion.

+ They can be realized as equivalence classes of noncommutative
rational expressions which are non-degenerate.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 9 / 23



Evaluations of noncommutative rational functions Noncommutative rational functions

Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the
free �eld C (<x1, . . . , xd )>.

Formally, C (<x1, . . . , xd )> is the universal �eld of fractions for the ring
C〈x1, . . . , xd〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, . . .

But what does this actually mean?

+ Noncommutative rational functions r ∈ C (<x1, . . . , xd )> are built,
loosely speaking, out of C and the variables x1, . . . , xd by successive
applications of the arithmetic operations addition, multiplication, and
inversion.

+ They can be realized as equivalence classes of noncommutative
rational expressions which are non-degenerate.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 9 / 23



Evaluations of noncommutative rational functions Noncommutative rational functions

Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the
free �eld C (<x1, . . . , xd )>.

Formally, C (<x1, . . . , xd )> is the universal �eld of fractions for the ring
C〈x1, . . . , xd〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, . . .

But what does this actually mean?

+ Noncommutative rational functions r ∈ C (<x1, . . . , xd )> are built,
loosely speaking, out of C and the variables x1, . . . , xd by successive
applications of the arithmetic operations addition, multiplication, and
inversion.

+ They can be realized as equivalence classes of noncommutative
rational expressions which are non-degenerate.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 9 / 23



Evaluations of noncommutative rational functions Noncommutative rational expressions

What actually are noncommutative rational expressions?

De�nition

A (noncommutative) rational expression r in d formal variables x1, . . . , xd
is a syntactically valid combination of

scalars λ ∈ C and the variables x1, . . . , xd,

the arithmetic operations +, ·,−1, and

parentheses (, ).

Example

r(x1, x2) = (x1 · x2 − 4)−1 · x1 · (x2 · x1 − 4)−1

r(x1, x2) = (i− x1)−1 · x2 + x1 · (i− x2)−1

r(x1, x2) = (x1 · x2 − x2 · x1)−1

r1(x1, x2) = 0−1, r2(x1, x2) = (x1 − x1)−1
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Evaluations of noncommutative rational functions Matrix evaluation equivalence

Matrix evaluation equivalence

Let r be any noncommutative rational expression in x1, . . . , xd.

For any unital complex algebra A, we de�ne the A-domain of r by

domA(r) :=
{
X = (X1, . . . , Xd) ∈ Ad

∣∣ �r(X) is de�ned in A�
}
.

We say that r is non-degenerate if domM(C)(r) 6= ∅, where

domM(C)(r) :=
∐
N∈N

domMN (C)(r).

According to [Kaliuzhnyi-Verbovetskyi, Vinnikov (2012)], we have that

C (<x1, . . . , xd )> =
{

[r]
∣∣ r non-degenerate nc rational expression

}
,

where [r] are equivalence classes with respect to the equivalence relation

r1 ∼ r2 :⇐⇒ ∀ X ∈ domM(C)(r1) ∩ domM(C)(r2) : r1(X) = r2(X).
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Evaluations of noncommutative rational functions The main problems

Back to our question . . .

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all noncommutative polynomials p ∈ C〈x1, . . . , xd〉, it holds true that

lim
N→∞

trN (p(XN
1 , . . . , X

N
d )) = τ(p(S1, . . . , Sd)) almost surely

We want to replace p ∈ C〈x1, . . . , xd〉 by r ∈ C (<x1, . . . , xd )>.

Problems

1 r(S1, . . . , Sd) might fail to be well-de�ned as a bounded operator.

+ Prove that r(S1, . . . , Sd) is well-de�ned in M̃, the ∗-algebra of densely

de�ned and closed operators that are a�liated withM.

2 r(XN
1 , . . . , X

N
d ) might fail to exist with non-zero probability.

+ Prove that, for all N which are large enough, r(XN
1 , . . . , X

N
d ) is

well-de�ned almost surely.

3 Prove that the empirical eigenvalue distribution of r(XN
1 , . . . , X

N
d )

converges in law to the analytic distribution of r(S1, . . . , Sd).
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The main results Evaluations in random matrices

Main result I: evaluations in random matrices

Suppose that XN = (XN
1 , . . . , X

N
d ) for N ∈ N are d-tuples of selfadjoint

random matrices with laws µNd on MN (C)dsa which are absolutely
continuous with respect to the Lebesgue measure on MN (C)dsa.

Theorem (Collins, M., Miyagawa, Parraud, Yin (2021))

Let r be a noncommutative rational expression in d formal variables which
is non-degenerate. Then there exists some N0 ∈ N such that almost surely

XN ∈ domMN (C)(r) for all N ≥ N0.

Recall that independent standard selfadjoint Gaussian random matrices of
size N ×N follow the law

dµNd (X) =
1

ZdN
e−

N
2

TrN (X2
1+···+X2

d) dX1 . . . dXd.
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The main results Evaluations in operators

Main result II: evaluations in operators

Suppose that X = (X1, . . . , Xd) is a d-tuple of selfadjoint operators in a
tracial W ∗-probability space (M, τ) satisfying ∆(X) = d.

De�nition (Connes, Shlyakhtenko (2005))

∆(X) := d− dimM⊗Mop

{
T ∈ FR(L2(M))d

∣∣∣ d∑
j=1

[Tj , JXjJ ] = 0
}HS

Facts

For a single operator X = X∗, we have ∆(X) = 1−
∑

t∈R µX({t})2.

If {X1, . . . , Xk} and {Xk+1, . . . ,Xd} are freely independent, then

∆(X1, . . . , Xd) = ∆(X1, . . . , Xk) + ∆(Xk+1, . . . , Xd).

In particular, for a d-tuple S = (S1, . . . , Sd) of freely independent
semicircular elements, we have that ∆(S) = ∆(S1) + · · ·+ ∆(Sd) = d.
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The main results Evaluations in operators

Main result II: evaluations in operators (continued)

Suppose that X = (X1, . . . , Xd) is a d-tuple of selfadjoint operators in a
tracial W ∗-probability space (M, τ) satisfying ∆(X) = d.

Theorem (M., Speicher, Yin (2019))

The canonical evaluation homomorphism

evX : C〈x1, . . . , xd〉 →M, xi1xi2 · · ·xik 7→ Xi1Xi2 · · ·Xik

extends to an injective homomorphism EvX : C (<x1, . . . , xd )>→ M̃.

Recall: C (<x1, . . . , xd )> =
{

[r]
∣∣ r non-degenerate nc rational expression

}
Theorem (Collins, M., Miyagawa, Parraud, Yin (2021))

Let r be a noncommutative rational expression in d formal variables which
is non-degenerate. Then

X ∈ domM̃(r) and r(X) = EvX([r]).
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The main results Convergence in law

Main result III: convergence in law

De�nition

A noncommutative rational expression r in d formal variables is said to be
selfadjoint, if for every unital complex ∗-algebra A, we have r(X)∗ = r(X)
for all X ∈ Adsa ∩ domA(r), where we set Asa := {X ∈ A | X∗ = X}.

Theorem (Collins, M., Miyagawa, Parraud, Yin (2021))

Let XN = (XN
1 , . . . , X

N
d ) be a d-tuple of selfadjoint random matrices.

Further, let r be a non-degenerate noncommutative rational expression in d
variables which is selfadjoint. Suppose the following:

1 XN dist−→ X almost surely as N →∞ for a d-tuple X in some tracial
W ∗-probability space (M, τ) satisfying ∆(X) = d.

2 For N large enough, r(XN ) is well-de�ned almost surely.

Then r(X) is well-de�ned, and the empirical measure of r(XN ) converges
almost surely in law towards the analytic distribution of r(X).
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Glimpse behind the scenes Fullness

Glimpse behind the scenes I: fullness

De�nition

Let A ∈Mk(C〈x1, . . . , xd〉) be given.

The (inner) rank of A, denoted by ρ(A), is the least integer r ≥ 1 for
which A can be written as A = R1R2 with some rectangular matrices

R1 ∈Mk×r(C〈x1, . . . , xd〉) and R2 ∈Mr×k(C〈x1, . . . , xd〉).

We call A full if it has full rank, i.e., if ρ(A) = k.

Facts

A full ⇐⇒ A invertible in Mk(C (<x1, . . . , xd )>)

If there is X = (X1, . . . , Xd) ∈MN (C)d for some N ∈ N such that
A(X) is invertible in MkN (C), then A is full.

Conversely, if A is full, then there exists N0 ∈ N such that for each
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Glimpse behind the scenes Formal linear representations

Glimpse behind the scenes II: linearization

De�nition (Helton, M., Speicher (2018))

Let r be a noncommutative rational expression in the formal variables
x1, . . . , xd. A formal linear representation ρ = (u,A, v) of r (of dimension
k) consists of

an a�ne linear pencil A = A0 ⊗ 1 +A1 ⊗ x1 + · · ·+Ad ⊗ xd with
matrix coe�cients A0, A1, . . . , Ad ∈Mk(C),

and a row vector u and a column vector v of dimension k over C,
and satis�es the following property:

For any unital complex algebra A and each X ∈ domA(r), we

have that A(X) is invertible in Mk(A) and r(X) = uA(X)−1v.

Theorem (Helton, M., Speicher (2018))

Each noncommutative rational expression r admits a formal linear
representation ρ = (u,A, v). If r is non-degenerate, then A is full.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 18 / 23



Glimpse behind the scenes Formal linear representations

Glimpse behind the scenes II: linearization

De�nition (Helton, M., Speicher (2018))

Let r be a noncommutative rational expression in the formal variables
x1, . . . , xd. A formal linear representation ρ = (u,A, v) of r (of dimension
k) consists of

an a�ne linear pencil A = A0 ⊗ 1 +A1 ⊗ x1 + · · ·+Ad ⊗ xd with
matrix coe�cients A0, A1, . . . , Ad ∈Mk(C),

and a row vector u and a column vector v of dimension k over C,
and satis�es the following property:

For any unital complex algebra A and each X ∈ domA(r), we

have that A(X) is invertible in Mk(A) and r(X) = uA(X)−1v.

Theorem (Helton, M., Speicher (2018))

Each noncommutative rational expression r admits a formal linear
representation ρ = (u,A, v). If r is non-degenerate, then A is full.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 18 / 23



Glimpse behind the scenes Formal linear representations

Glimpse behind the scenes II: linearization

De�nition (Helton, M., Speicher (2018))

Let r be a noncommutative rational expression in the formal variables
x1, . . . , xd. A formal linear representation ρ = (u,A, v) of r (of dimension
k) consists of

an a�ne linear pencil A = A0 ⊗ 1 +A1 ⊗ x1 + · · ·+Ad ⊗ xd with
matrix coe�cients A0, A1, . . . , Ad ∈Mk(C),

and a row vector u and a column vector v of dimension k over C,
and satis�es the following property:

For any unital complex algebra A and each X ∈ domA(r), we

have that A(X) is invertible in Mk(A) and r(X) = uA(X)−1v.

Theorem (Helton, M., Speicher (2018))

Each noncommutative rational expression r admits a formal linear
representation ρ = (u,A, v). If r is non-degenerate, then A is full.

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 18 / 23



Glimpse behind the scenes Invertibility of a�ne linear pencils

Glimpse behind the scenes III: invertibility

Consider an a�ne linear pencil

A = A0 ⊗ 1 +A1 ⊗ x1 + · · ·+Ad ⊗ xd
in Mk(C)⊗ C〈x1, . . . , xd〉 ∼= Mk(C〈x1, . . . , xd〉) which is full.

Theorem (M., Speicher, Yin (2019))

Suppose that X = (X1, . . . , Xd) is a d-tuple of selfadjoint operators in a
tracial W ∗-probability space (M, τ) satisfying ∆(X) = d. Then

A(X) ∈MN (M) is invertible in MN (M̃).

Theorem (Collins, M., Miyagawa, Parraud, Yin (2021))

Suppose that XN = (XN
1 , . . . , X

N
d ) for N ∈ N are d-tuples of selfadjoint

random matrices with laws µNd on MN (C)dsa which are absolutely
continuous with respect to the Lebesgue measure on MN (C)dsa. Then there
exists some N0 ∈ N such that almost surely

A(XN ) is invertible in MkN (C) for all N ≥ N0.
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Glimpse behind the scenes The recursive structure of nc rational expressions

Glimpse behind the scenes IV: recursive structure

Fact

Let R0 be the set of all non-degenerate noncommutative rational
expressions in d formal variables. Suppose that R ⊆ R0 satis�es:

1 C ∪ {x1, . . . , xd} ⊆ R.

2 For r1, r2 ∈ R, we have r1 + r2 ∈ R and r1 · r2 ∈ R.

3 If r ∈ R is such that r−1 is non-degenerate, then r−1 ∈ R.

Then R = R0.

The evaluation part is proven by applying the previous argument to

R0 := {r | X ∈ domM̃(r) and r(X) = EvX([r])} respectively

R0 := {r | ∃N0 ∈ N : almost surely ∀N ≥ N0 : XN ∈ domMN (C)(r)}.

For 3 , use linearization ρ = (u,A, v) of r and the Schur complement

formula for the full a�ne linear pencil

(
0 u
v A

)
∈Mk+1(C〈x1, . . . , xd〉).
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Glimpse behind the scenes The recursive structure of nc rational expressions

Glimpse behind the scenes IV: recursive structure

Fact

Let R0 be the set of all non-degenerate noncommutative rational
expressions in d formal variables. Suppose that R ⊆ R0 satis�es:

1 C ∪ {x1, . . . , xd} ⊆ R.

2 For r1, r2 ∈ R, we have r1 + r2 ∈ R and r1 · r2 ∈ R.

3 If r ∈ R is such that r−1 is non-degenerate, then r−1 ∈ R.

Then R = R0.

The evaluation part is proven by applying the previous argument to

R0 := {r | X ∈ domM̃(r) and r(X) = EvX([r])} respectively

R0 := {r | ∃N0 ∈ N : almost surely ∀N ≥ N0 : XN ∈ domMN (C)(r)}.

For 3 , use linearization ρ = (u,A, v) of r and the Schur complement

formula for the full a�ne linear pencil

(
0 u
v A

)
∈Mk+1(C〈x1, . . . , xd〉).

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 20 / 23



Glimpse behind the scenes The recursive structure of nc rational expressions

Glimpse behind the scenes IV: recursive structure

Fact

Let R0 be the set of all non-degenerate noncommutative rational
expressions in d formal variables. Suppose that R ⊆ R0 satis�es:

1 C ∪ {x1, . . . , xd} ⊆ R.

2 For r1, r2 ∈ R, we have r1 + r2 ∈ R and r1 · r2 ∈ R.

3 If r ∈ R is such that r−1 is non-degenerate, then r−1 ∈ R.

Then R = R0.

The evaluation part is proven by applying the previous argument to

R0 := {r | X ∈ domM̃(r) and r(X) = EvX([r])} respectively

R0 := {r | ∃N0 ∈ N : almost surely ∀N ≥ N0 : XN ∈ domMN (C)(r)}.

For 3 , use linearization ρ = (u,A, v) of r and the Schur complement

formula for the full a�ne linear pencil

(
0 u
v A

)
∈Mk+1(C〈x1, . . . , xd〉).

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 20 / 23



Glimpse behind the scenes The recursive structure of nc rational expressions

Glimpse behind the scenes IV: recursive structure

Fact

Let R0 be the set of all non-degenerate noncommutative rational
expressions in d formal variables. Suppose that R ⊆ R0 satis�es:

1 C ∪ {x1, . . . , xd} ⊆ R.

2 For r1, r2 ∈ R, we have r1 + r2 ∈ R and r1 · r2 ∈ R.

3 If r ∈ R is such that r−1 is non-degenerate, then r−1 ∈ R.

Then R = R0.

The evaluation part is proven by applying the previous argument to

R0 := {r | X ∈ domM̃(r) and r(X) = EvX([r])} respectively

R0 := {r | ∃N0 ∈ N : almost surely ∀N ≥ N0 : XN ∈ domMN (C)(r)}.

For 3 , use linearization ρ = (u,A, v) of r and the Schur complement

formula for the full a�ne linear pencil

(
0 u
v A

)
∈Mk+1(C〈x1, . . . , xd〉).

Tobias Mai (Saarland University) NC rational functions evaluated in RM June 9, 2021 20 / 23



Glimpse behind the scenes Selfadjoint formal linear representations

Glimpse behind the scenes V: selfadjoint linearization

De�nition (Helton, M., Speicher (2018))

Let r be a selfadjoint noncommutative rational expression. A selfadjoint
formal linear representation ρ = (Q,w) of r (of dimension k) consists of

an a�ne linear pencil Q = Q0 ⊗ 1 +Q1 ⊗ x1 + · · ·+Qd ⊗ xd with
selfadjoint matrix coe�cients Q0, Q1, . . . , Qd ∈Mk(C),

and a column vector w of dimension k over C,
and satis�es the following property:

For any unital complex ∗-algebra A, if X ∈ Adsa ∩ domA(r), then
Q(X) is invertible in Mk(A) and r(X) = w∗Q(X)−1w.

Theorem (Helton, M., Speicher (2018))

Each selfadjoint noncommutative rational expression r admits a selfadjoint
formal linear representation ρ = (Q,w). If r is non-degenerate, then Q is
full.
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Glimpse behind the scenes Convergence in law

Glimpse behind the scenes VI: convergence in law

For X ∈ M̃sa, de�ne the cumulative distribution function

FX : R→ [0, 1], FX(t) := µX
(
(−∞, t]

)
.

By Portmanteau's theorem, we need to show that (almost surely)

lim sup
N→∞

∣∣Fw∗Q(XN )−1w(t)−Fw∗Q(X)−1w(t)
∣∣ = 0

for every t ∈ R which is a point of continuity of Fw∗Q(X)−1w.

Step 1: For ε > 0, let fε : R→ R be continuous such that fε(t) = t−1 for
all t ∈ R \ [−ε, ε]; then, with QN := Q(XN ) and Q∞ := Q(X),∣∣Fw∗Q−1

N w(t)−Fw∗Q−1
∞ w(t)

∣∣ ≤ ∣∣Fw∗fε(QN )w(t)−Fw∗fε(Q∞)w(t)
∣∣

+ (Trk⊗ trN )(1[−ε,ε](QN )) + (Trk⊗ trN )(1[−ε,ε](Q∞)).

Step 2: Prove that w∗fε(QN )w
dist−→ w∗fε(Q∞)w as N →∞, by

approximating fε by polynomials, and use Portmanteau's theorem again.
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Concluding remarks

Extension of the main results

So far: XN dist−→ X almost surely as N →∞
XN = (XN

1 , . . . , X
N
d ) are tuples of selfadjoint random matrices with

absolutely continuous laws on MN (C)dsa,
X = (X1, . . . , Xd) is a tuple of selfadjoint operators with ∆(X) = d

In such situations, we studied the (convergence in law of) evaluations of
(selfadjoint) non-degenerate noncommutative rational expressions.

It is possible to generalize this to . . .

1 tuples (XN , UN ) of selfadjoint and unitary random matrices with
absolutely continuous laws on MN (C)d1sa × UN (C)d2 which are
convergent in ∗-distribution to (X,U) with ∆(X,U) = d1 + d2;

2 (convergence in law of) evaluations of (selfadjoint) matrix-valued
non-degenerate noncommutative rational expressions.

Thank you!
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