The free field meets free probability theory

Tobias Mai

(joint work with R. Speicher and S. Yin)

Saarland University

Workshop on Free Probability: the theory, its extensions Centre de recherches mathematiques Montreal

March 5, 2019

Supported by the ERC Advanced Grant "Non-commutative distributions in free probability"

Noncommutative probability spaces

Noncommutative probability spaces

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi : \mathcal{A} \to \mathbb{C}$ with $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Noncommutative probability spaces

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ with $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Definition

A noncommutative probability space (\mathcal{A},ϕ) is called

- C^* -probability space if
 - \mathcal{A} is a unital C*-algebra and
 - ϕ is a state on ${\cal A}$.
- ullet tracial W^* -probability space, if
 - $\blacktriangleright \,\, \mathcal{A}$ is a von Neumann algebra and
 - ϕ is a faithful normal tracial state on ${\cal A}.$

Noncommutative distributions

Noncommutative distributions

Definition ("combinatorial distribution")

Let (\mathcal{A}, ϕ) be a noncommutative probability space. For any given family $X = (X_i)_{i \in I}$ of noncommutative random variables, we call

 $\mu_X: \ \mathbb{C}\langle x_i \mid i \in I \rangle \to \mathbb{C}, \quad x_{i_1} \cdots x_{i_k} \mapsto \phi(X_{i_1} \cdots X_{i_k})$

the (joint) noncommutative distribution of X.

Noncommutative distributions

Definition ("combinatorial distribution")

Let (\mathcal{A}, ϕ) be a noncommutative probability space. For any given family $X = (X_i)_{i \in I}$ of noncommutative random variables, we call

$$\mu_X: \ \mathbb{C}\langle x_i \mid i \in I \rangle \to \mathbb{C}, \quad x_{i_1} \cdots x_{i_k} \mapsto \phi(X_{i_1} \cdots X_{i_k})$$

the (joint) noncommutative distribution of X.

Definition ("analytic distribution")

Let (\mathcal{A}, ϕ) be a C^* -probability space. For any given $X = X^* \in \mathcal{A}$, the noncommutative distribution of X can be identified with the unique Borel probability measure μ_X on the real line \mathbb{R} that satisfies

$$\phi(X^k) = \int_{\mathbb{R}} t^k \, d\mu_X(t) \qquad \text{for all integers } k \ge 0.$$

Let (\mathcal{M}, τ) be a tracial W^* -probability space and let (X_1, \ldots, X_n) be a tuple of selfadjoint operators in \mathcal{M} .

Noncommutative distribution $\mu_{X_1,...,X_n}$

Let (\mathcal{M}, τ) be a tracial W^* -probability space and let (X_1, \ldots, X_n) be a tuple of selfadjoint operators in \mathcal{M} .

A generic regularity question

Consider the analytic distribution μ_Y of $Y = f(X_1, \ldots, X_n)$ for a given a selfadjoint "noncommutative test function" f. Under what conditions on (X_1, \ldots, X_n) can we understand the atomic part of μ_Y ?

1 Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in formal non-commuting indeterminates x_1, \ldots, x_n ; we denote the unital complex algebra consisting of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

O Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1, \dots, i_k=1}^{n} a_{i_1, \dots, i_k} x_{i_1} \cdots x_{i_k}$$

- in formal non-commuting indeterminates x_1, \ldots, x_n ; we denote the unital complex algebra consisting of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.
- 2 Matrices of noncommutative polynomials, i.e., elements \mathbf{P} in $M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ for an arbitrary $N \in \mathbb{N}$.

1 Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

- in formal non-commuting indeterminates x_1, \ldots, x_n ; we denote the unital complex algebra consisting of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.
- 2 Matrices of noncommutative polynomials, i.e., elements \mathbf{P} in $M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ for an arbitrary $N \in \mathbb{N}$.
- Affine linear pencils, i.e., matrices of noncommutative polynomials that are of the particular form

$$\mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n$$

with scalar matrices b_0, b_1, \ldots, b_n of appropriate size.

The strong Atiyah property

The strong Atiyah property

Definition (Shlyakhtenko, Skoufranis (2015))

We say that $X = (X_1, \ldots, X_n)$ has the strong Atiyah property if

 $\operatorname{rank}(\mathbf{P}(X)) \in [0,\infty) \cap \mathbb{Z}$ for each $\mathbf{P} \in M_N(\mathbb{C}\langle x_1,\ldots,x_n \rangle)$.

The strong Atiyah property

Definition (Shlyakhtenko, Skoufranis (2015))

We say that $X = (X_1, \ldots, X_n)$ has the strong Atiyah property if

 $\operatorname{rank}(\mathbf{P}(X)) \in [0,\infty) \cap \mathbb{Z}$ for each $\mathbf{P} \in M_N(\mathbb{C}\langle x_1,\ldots,x_n \rangle).$

Reminder

$$\operatorname{rank}(\mathbf{P}(X)) := N - (\operatorname{Tr}_N \circ \tau^{(N)})(p_{\ker(\mathbf{P}(X))}),$$

ΔT

where

• Tr_N:
$$M_N(\mathbb{C}) \to \mathbb{C}$$
, $(a_{ij})_{i,j=1}^N \mapsto \sum_{i=1}^N a_{ii}$,
• $\tau^{(N)}$: $M_N(\mathcal{M}) \to M_N(\mathbb{C})$, $(Y_{ij})_{i,j=1}^N \mapsto (\tau(Y_{ij}))_{i,j=1}^N$

• and $p_{\ker(\mathbf{P}(X))} \in M_N(\mathcal{M})$ is the orthogonal projection onto the kernel $\ker(\mathbf{P}(X))$ of the operator $\mathbf{P}(X)$.

Results about atoms |

Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

- the operators X_1,\ldots,X_n are freely independent and
- ullet the individual analytic distributions $\mu_{X_1},\ldots,\mu_{X_n}$ are all non-atomic,

then the tuple $X = (X_1, \ldots, X_n)$ has the strong Atiyah property.

Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

- ullet the operators X_1,\ldots,X_n are freely independent and
- ullet the individual analytic distributions $\mu_{X_1},\ldots,\mu_{X_n}$ are all non-atomic,

then the tuple $X = (X_1, \ldots, X_n)$ has the strong Atiyah property.

Facts

If (X_1,\ldots,X_n) has the strong Atiyah property, then the following holds:

• For every selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$, the measure of each atom in the analytic distribution $\mu_{\mathbf{Y}}$ of the selfadjoint operator $\mathbf{Y} = \mathbf{P}(X_1, \ldots, X_n)$ is an integer multiple of $\frac{1}{N}$.

Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

- ullet the operators X_1,\ldots,X_n are freely independent and
- ullet the individual analytic distributions $\mu_{X_1},\ldots,\mu_{X_n}$ are all non-atomic,

then the tuple $X = (X_1, \ldots, X_n)$ has the strong Atiyah property.

Facts

If (X_1,\ldots,X_n) has the strong Atiyah property, then the following holds:

- For every selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$, the measure of each atom in the analytic distribution $\mu_{\mathbf{Y}}$ of the selfadjoint operator $\mathbf{Y} = \mathbf{P}(X_1, \ldots, X_n)$ is an integer multiple of $\frac{1}{N}$.
- In particular, if $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ is a non-constant selfadjoint polynomial, then the analytic distribution μ_Y of the selfadjoint operator $Y = P(X_1, \ldots, X_n)$ cannot have atoms.

Consider again the *-algebra $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials in formal selfadjoint variables x_1, \ldots, x_n .

Consider again the *-algebra $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials in formal selfadjoint variables x_1, \ldots, x_n .

Definition

The noncommutative derivatives are the linear mappings

 $\partial_1, \ldots, \partial_n : \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle \otimes \mathbb{C}\langle x_1, \ldots, x_n \rangle$

which are uniquely determined by the two conditions

- $\partial_j(P_1P_2) = (\partial_j P_1) \cdot P_2 + P_1 \cdot (\partial_j P_2)$ for all $P_1, P_2 \in \mathbb{C}\langle x_1, \dots, x_n \rangle$,
- $\partial_j x_i = \delta_{i,j} 1 \otimes 1$ for $i, j = 1, \dots, n$.

Consider again the *-algebra $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials in formal selfadjoint variables x_1, \ldots, x_n .

Definition

The noncommutative derivatives are the linear mappings

 $\partial_1, \ldots, \partial_n: \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle \otimes \mathbb{C}\langle x_1, \ldots, x_n \rangle$

which are uniquely determined by the two conditions

• $\partial_j(P_1P_2) = (\partial_j P_1) \cdot P_2 + P_1 \cdot (\partial_j P_2)$ for all $P_1, P_2 \in \mathbb{C}\langle x_1, \dots, x_n \rangle$, • $\partial_j x_i = \delta_{i,j} 1 \otimes 1$ for $i, j = 1, \dots, n$.

 $\mathbb{C}\langle x_1,\ldots,x_n
angle\otimes\mathbb{C}\langle x_1,\ldots,x_n
angle$ becomes a $\mathbb{C}\langle x_1,\ldots,x_n
angle$ -bimodule via $P_1\cdot(Q_1\otimes Q_2)\cdot P_2:=(P_1Q_1)\otimes(Q_2P_2).$

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0, au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0, au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \mathrm{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0, au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n
angle$

 $(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$

then (ξ_1, \ldots, ξ_n) is called the conjugate system for (X_1, \ldots, X_n) .

Definition (Voiculescu (1998))

The (non-microstates) free Fisher information is defined by

$$\Phi^*(X_1,\ldots,X_n) := \begin{cases} \sum_{j=1}^n \|\xi_j\|_2^2, & \text{if a conjugate system } (\xi_1,\ldots,\xi_n) \\ & \text{for } (X_1,\ldots,X_n) \text{ exists} \\ & \infty, & \text{otherwise} \end{cases}$$

9 / 19

A useful variant of the free entropy dimension

A useful variant of the free entropy dimension

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2 + nt} \le \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

10 / 19

A useful variant of the free entropy dimension

De

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2 + nt} \le \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$
Definition (Connes, Shlyakhtenko (2005))

$$\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t \Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$
A useful variant of the free entropy dimension

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2 + nt} \leq \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \leq \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$
Definition (Connes, Shlyakhtenko (2005))
 $\delta^*(X_1, \dots, X_n) := n - \liminf_{t \searrow 0} t \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n)$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

w

D

A useful variant of the free entropy dimension

Suppose that S_1, \ldots, S_n are freely independent semicircular elements that are also free from $\{X_1, \ldots, X_n\}$, then $(X_1 + \sqrt{t}S_n, \ldots, X_n + \sqrt{t}S_n)$ admits a conjugate system for each t > 0. More precisely, we have

$$\frac{n^2}{C^2+nt} \le \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2).$

Definition (Connes, Shlyakhtenko (2005))

 $\delta^*(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^*(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

Philosophy If $\delta^{\star}(X_1,\ldots,X_n)=n$, then μ_{X_1,\ldots,X_n} has no "atomic part".

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17) Suppose that $\delta^*(X_1, \ldots, X_n) = n$. Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be a selfadjoint non-constant noncommutative polynomial and consider the selfadjoint operator

$$Y = P(X_1, \ldots, X_n).$$

Then the analytic distribution μ_Y of Y does not have atoms.

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17) Suppose that $\delta^{\star}(X_1, \ldots, X_n) = n$. Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be a selfadjoint non-constant noncommutative polynomial and consider the selfadjoint operator

$$Y = P(X_1, \ldots, X_n).$$

Then the analytic distribution μ_Y of Y does not have atoms.

Questions

• Does $\delta^*(X_1, \ldots, X_n) = n$ imply that (X_1, \ldots, X_n) has the strong Atiyah property?

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17) Suppose that $\delta^{\star}(X_1, \ldots, X_n) = n$. Let $P \in \mathbb{C}\langle x_1, \ldots, x_n \rangle$ be a selfadjoint non-constant noncommutative polynomial and consider the selfadjoint operator

$$Y = P(X_1, \ldots, X_n).$$

Then the analytic distribution μ_Y of Y does not have atoms.

Questions

• Does $\delta^*(X_1, \ldots, X_n) = n$ imply that (X_1, \ldots, X_n) has the strong Atiyah property?

Can we exclude atoms not only for non-constant noncommutative polynomials but also for operators that are noncommutative rational expressions in X₁,..., X_n?
 What actually does "non-constant" mean in this case?

• By definition, noncommutative rational functions are elements of the free field $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

- By definition, noncommutative rational functions are elements of the free field C ≤ x₁,..., x_n >.
- Formally, $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ is the universal field of fractions for the ring $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials.

- By definition, noncommutative rational functions are elements of the free field C ≤ x₁,..., x_n >.
- Formally, $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ is the universal field of fractions for the ring $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials.
- Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

- By definition, noncommutative rational functions are elements of the free field C ≤ x₁,..., x_n >.
- Formally, $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ is the universal field of fractions for the ring $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials.
- Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

- By definition, noncommutative rational functions are elements of the free field C ≤ x₁,..., x_n >.
- Formally, $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ is the universal field of fractions for the ring $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials.
- Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

Loosely speaking, noncommutative rational functions are built out of noncommutative polynomials by successive applications of the arithmetic operations addition, multiplication, and inversion.

- By definition, noncommutative rational functions are elements of the free field C ≤ x₁,..., x_n >.
- Formally, $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ is the universal field of fractions for the ring $\mathbb{C}\langle x_1, \ldots, x_n \rangle$ of noncommutative polynomials.
- Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

- Loosely speaking, noncommutative rational functions are built out of noncommutative polynomials by successive applications of the arithmetic operations addition, multiplication, and inversion.
- They can be realized as equivalence classes of noncommutative rational expressions which are non-degenerate.

Definition

Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ be given.

• The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

 $\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle) \quad \text{and} \quad \mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$

Definition

- Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ be given.
 - The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

 $\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle) \quad \text{and} \quad \mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$

• We call ${f Q}$ full if it has full rank, i.e., if $ho({f Q})=N.$

Definition

- Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ be given.
 - The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

 $\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle) \quad \text{and} \quad \mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$

• We call ${f Q}$ full if it has full rank, i.e., if $ho({f Q})=N.$

Facts

• Q full \iff Q invertible in $M_N(\mathbb{C} \not < x_1, \dots, x_n \not>)$

Definition

- Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ be given.
 - The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

 $\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle) \quad \text{and} \quad \mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$

• We call \mathbf{Q} full if it has full rank, i.e., if $\rho(\mathbf{Q}) = N$.

Facts

- Q full \iff Q invertible in $M_N(\mathbb{C} \not < x_1, \dots, x_n \not>)$
- Every noncommutative rational function $r \in \mathbb{C} \langle x_1, \ldots, x_n \rangle$ admits a linear representation, i.e., it can be written as $r = u \mathbf{Q}^{-1} v$ with a full affine linear pencil $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$, and scalar vectors u and v of appropriate size.

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1, \ldots, X_n \in \mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X : \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $ev_X(x_i) = X_i$ for i = 1, ..., n. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}: M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), \ (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$$

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1, \ldots, X_n \in \mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X : \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $ev_X(x_i) = X_i$ for i = 1, ..., n. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}: \ M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), \ (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$$

This defines evaluation of (matrix-valued) noncommutative polynomials and of affine linear pencils, in particular. Rational functions are more subtle.

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1, \ldots, X_n \in \mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X : \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $ev_X(x_i) = X_i$ for i = 1, ..., n. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}$$
: $M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), \ (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$

This defines evaluation of (matrix-valued) noncommutative polynomials and of affine linear pencils, in particular. Rational functions are more subtle.

Challenging facts

• Not every rational expression can be evaluated everywhere.

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1, \ldots, X_n \in \mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X : \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $ev_X(x_i) = X_i$ for i = 1, ..., n. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}: \ M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), \ (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$$

This defines evaluation of (matrix-valued) noncommutative polynomials and of affine linear pencils, in particular. Rational functions are more subtle.

Challenging facts

- Not every rational expression can be evaluated everywhere.
- Two rational expressions representing the same rational function need not to give the same value under evaluation.

Let (\mathcal{M}, τ) be a tracial W^* -probability space and let \mathcal{A} be the algebra of unbounded operators affiliated to \mathcal{M} .

Evaluations of noncommutative rational functions II Let (\mathcal{M}, τ) be a tracial W^* -probability space and let \mathcal{A} be the algebra of unbounded operators affiliated to \mathcal{M} .

Definition

For a linear representation $ho=(u,{f Q},v)$ (of any rational function), we put

 $\operatorname{dom}_{\mathcal{A}}(\rho) := \{ X \in \mathcal{A}^n \mid \mathbf{Q}(X) \text{ invertible in } M_N(\mathcal{A}) \}.$

15 / 19

Evaluations of noncommutative rational functions || Let (\mathcal{M}, τ) be a tracial W^* -probability space and let \mathcal{A} be the algebra of unbounded operators affiliated to \mathcal{M} .

Definition

For a linear representation $ho=(u,{f Q},v)$ (of any rational function), we put

 $\operatorname{dom}_{\mathcal{A}}(\rho) := \{ X \in \mathcal{A}^n \mid \mathbf{Q}(X) \text{ invertible in } M_N(\mathcal{A}) \}.$

Theorem

• Suppose that $\rho_1 = (u_1, \mathbf{Q}_1, v_1)$ and $\rho_2 = (u_2, \mathbf{Q}_2, v_2)$ are two linear representations of the same noncommutative rational function. Then

 $X \in \operatorname{dom}_{\mathcal{A}}(\rho_1) \cap \operatorname{dom}_{\mathcal{A}}(\rho_2) \implies u_1 \mathbf{Q}_1(X)^{-1} v_1 = u_2 \mathbf{Q}_2(X)^{-1} v_2.$

Evaluations of noncommutative rational functions || Let (\mathcal{M}, τ) be a tracial W^* -probability space and let \mathcal{A} be the algebra of unbounded operators affiliated to \mathcal{M} .

Definition

For a linear representation $ho=(u,{f Q},v)$ (of any rational function), we put

 $\operatorname{dom}_{\mathcal{A}}(\rho) := \{ X \in \mathcal{A}^n \mid \mathbf{Q}(X) \text{ invertible in } M_N(\mathcal{A}) \}.$

Theorem

• Suppose that $\rho_1 = (u_1, \mathbf{Q}_1, v_1)$ and $\rho_2 = (u_2, \mathbf{Q}_2, v_2)$ are two linear representations of the same noncommutative rational function. Then

 $X \in \operatorname{dom}_{\mathcal{A}}(\rho_1) \cap \operatorname{dom}_{\mathcal{A}}(\rho_2) \implies u_1 \mathbf{Q}_1(X)^{-1} v_1 = u_2 \mathbf{Q}_2(X)^{-1} v_2.$

② Every $r \in \mathbb{C}{\langle\!\!\!\langle} x_1,\ldots,x_n{
ightarrow}$ admits an evaluation $r(X)=\mathrm{Ev}_X(r)$ on

 $\operatorname{dom}_{\mathcal{A}}(r) := \bigcup \big\{ \operatorname{dom}_{\mathcal{A}}(\rho) \mid \rho \text{ linear representation of } r \big\},$

which is given by $\operatorname{Ev}_X(r) := u \mathbf{Q}(X)^{-1} v$ for any $\rho = (u, \mathbf{Q}, v)$.

Let $\mathcal A$ be the *-algebra of all unbounded linear operators affiliated to $\mathcal M$.

Let $\mathcal A$ be the *-algebra of all unbounded linear operators affiliated to $\mathcal M$.

Theorem (M., Speicher, Yin (2018))

For every given $X = (X_1, \ldots, X_n)$ in \mathcal{M}^n , the following statements are equivalent:

• For any $N \in \mathbb{N}$ and every affine linear pencil $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ we have: if \mathbf{P} is full, then $\mathbf{P}(X) \in M_N(\mathcal{A})$ is invertible.

Let $\mathcal A$ be the *-algebra of all unbounded linear operators affiliated to $\mathcal M$.

Theorem (M., Speicher, Yin (2018))

For every given $X = (X_1, \ldots, X_n)$ in \mathcal{M}^n , the following statements are equivalent:

- For any $N \in \mathbb{N}$ and every affine linear pencil $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ we have: if \mathbf{P} is full, then $\mathbf{P}(X) \in M_N(\mathcal{A})$ is invertible.
- ② For any $N \in \mathbb{N}$ and every $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ we have: if **P** is full, then $\mathbf{P}(X) \in M_N(\mathcal{A})$ is invertible.

Let $\mathcal A$ be the *-algebra of all unbounded linear operators affiliated to $\mathcal M$.

Theorem (M., Speicher, Yin (2018))

For every given $X = (X_1, \ldots, X_n)$ in \mathcal{M}^n , the following statements are equivalent:

- For any $N \in \mathbb{N}$ and every affine linear pencil $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ we have: if \mathbf{P} is full, then $\mathbf{P}(X) \in M_N(\mathcal{A})$ is invertible.
- ② For any $N \in \mathbb{N}$ and every $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ we have: if **P** is full, then $\mathbf{P}(X) \in M_N(\mathcal{A})$ is invertible.
- **③** For any $N \in \mathbb{N}$ and $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \dots, x_n \rangle)$ we have:

 $\operatorname{rank}(\mathbf{P}(X)) = \rho(\mathbf{P}).$

Let $\mathcal A$ be the *-algebra of all unbounded linear operators affiliated to $\mathcal M$.

Theorem (M., Speicher, Yin (2018))

For every given $X = (X_1, \ldots, X_n)$ in \mathcal{M}^n , the following statements are equivalent:

- For any $N \in \mathbb{N}$ and every affine linear pencil $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ we have: if \mathbf{P} is full, then $\mathbf{P}(X) \in M_N(\mathcal{A})$ is invertible.
- ② For any $N \in \mathbb{N}$ and every $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ we have: if **P** is full, then $\mathbf{P}(X) \in M_N(\mathcal{A})$ is invertible.
- **③** For any $N \in \mathbb{N}$ and $\mathbf{P} \in M_N(\mathbb{C} \langle x_1, \dots, x_n \rangle)$ we have:

$$\operatorname{rank}(\mathbf{P}(X)) = \rho(\mathbf{P}).$$

• We have $X \in \text{dom}_{\mathcal{A}}(r)$ for each $r \in \mathbb{C} \langle x_1, \ldots, x_n \rangle$ and $r \mapsto \text{Ev}_X(r)$ induces an injective homomorphism $\text{Ev}_X : \mathbb{C} \langle x_1, \ldots, x_n \rangle \to \mathcal{A}$ that extends the evaluation map $\text{ev}_X : \mathbb{C} \langle x_1, \ldots, x_n \rangle \to \mathcal{A}$.

Theorem (M., Speicher, Yin (2018))

If $\delta^*(X_1, \ldots, X_n) = n$, then the equivalent statements of the previous theorem hold. In particular, we have the following:

Q $X = (X_1, \ldots, X_n)$ has the strong Atiyah property. In fact,

 $\operatorname{rank}(\mathbf{P}(X)) = \rho(\mathbf{P}) \qquad \text{for all } \mathbf{P} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle).$
Results about atoms III

Theorem (M., Speicher, Yin (2018))

If $\delta^*(X_1, \ldots, X_n) = n$, then the equivalent statements of the previous theorem hold. In particular, we have the following:

($X = (X_1, \ldots, X_n)$ has the strong Atiyah property. In fact,

 $\operatorname{rank}(\mathbf{P}(X)) = \rho(\mathbf{P}) \quad \text{for all } \mathbf{P} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle).$

2 For every selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$, the operator $\mathbf{Y} := \mathbf{P}(X_1, \dots, X_n)$ has atoms precisely at the points in the set

 $\left\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda \mathbf{1}_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \right\}$

with size $\mu_{\mathbf{Y}}(\{\lambda\}) = 1 - \frac{1}{N}\rho(\mathbf{P} - \lambda \mathbf{1}_N)$.

Results about atoms III

Theorem (M., Speicher, Yin (2018))

If $\delta^*(X_1, \ldots, X_n) = n$, then the equivalent statements of the previous theorem hold. In particular, we have the following:

 ${\small \bigcirc} \ X=(X_1,\ldots,X_n) \text{ has the strong Atiyah property. In fact,}$

 $\operatorname{rank}(\mathbf{P}(X)) = \rho(\mathbf{P}) \quad \text{for all } \mathbf{P} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle).$

2 For every selfadjoint $\mathbf{P} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$, the operator $\mathbf{Y} := \mathbf{P}(X_1, \dots, X_n)$ has atoms precisely at the points in the set

 $\left\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda \mathbf{1}_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \right\}$

with size $\mu_{\mathbf{Y}}(\{\lambda\}) = 1 - \frac{1}{N}\rho(\mathbf{P} - \lambda \mathbf{1}_N)$.

• For every non-constant selfadjoint $r \in \mathbb{C} \langle x_1, \ldots, x_n \rangle$, the evaluation r(X) is an affiliated unbounded operator whose analytic distribution has no atoms.

The main step is to prove by induction on ${\boldsymbol N}$ that

 $A(N) \quad \begin{cases} & \text{ If } b_0, b_1, \dots, b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ & \mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \\ & \text{ is full over } \mathbb{C}\langle x_1, \dots, x_n \rangle, \text{ then the only projection} \\ & p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{cases}$

The main step is to prove by induction on ${\boldsymbol N}$ that

$$A(N) \begin{cases} \text{If } b_0, b_1, \dots, b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ \mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \\ \text{ is full over } \mathbb{C}\langle x_1, \dots, x_n \rangle, \text{ then the only projection} \\ p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{cases}$$

• $\delta^{\star}(X_1,\ldots,X_n) = n$ tells us that there is a projection $q \in M_N(\mathcal{M}_0)$ such that

$$(\operatorname{tr}_N \circ \tau^{(N)})(q) \ge (\operatorname{tr}_N \circ \tau^{(N)})(p)$$

and such that, if we put $\widetilde{p}:= au^{(N)}(p)$ and $\widetilde{q}:= au^{(N)}(q),$

$$ilde{p}b_j ilde{q}=0$$
 for $j=0,1,\ldots,n.$

The main step is to prove by induction on ${\boldsymbol N}$ that

$$A(N) \begin{cases} \text{If } b_0, b_1, \dots, b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ \mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \\ \text{ is full over } \mathbb{C}\langle x_1, \dots, x_n \rangle, \text{ then the only projection} \\ p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{cases}$$

• $\delta^{\star}(X_1,\ldots,X_n) = n$ tells us that there is a projection $q \in M_N(\mathcal{M}_0)$ such that

$$(\operatorname{tr}_N \circ \tau^{(N)})(q) \ge (\operatorname{tr}_N \circ \tau^{(N)})(p)$$

and such that, if we put $\widetilde{p}:= au^{(N)}(p)$ and $\widetilde{q}:= au^{(N)}(q),$

$$\tilde{p}b_j\tilde{q}=0$$
 for $j=0,1,\ldots,n.$

2 Fullness of **P** gives that $\operatorname{rank}(\tilde{p}) + \operatorname{rank}(\tilde{q}) \leq N$.

The main step is to prove by induction on ${\boldsymbol N}$ that

$$A(N) \begin{cases} & \text{ If } b_0, b_1, \dots, b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ & \mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \\ & \text{ is full over } \mathbb{C}\langle x_1, \dots, x_n \rangle, \text{ then the only projection} \\ & p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{cases}$$

• $\delta^{\star}(X_1,\ldots,X_n) = n$ tells us that there is a projection $q \in M_N(\mathcal{M}_0)$ such that

$$(\operatorname{tr}_N \circ \tau^{(N)})(q) \ge (\operatorname{tr}_N \circ \tau^{(N)})(p)$$

and such that, if we put $\widetilde{p}:= au^{(N)}(p)$ and $\widetilde{q}:= au^{(N)}(q),$

$$\tilde{p}b_j\tilde{q}=0$$
 for $j=0,1,\ldots,n.$

- **2** Fullness of **P** gives that $\operatorname{rank}(\tilde{p}) + \operatorname{rank}(\tilde{q}) \leq N$.
- Use this to construct a full matrix $\mathbf{P}' \in M_{N-1}(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ and a projection $p' \in M_{N-1}(\mathcal{M}_0)$ such that $\mathbf{P}'(X)p' = 0$.

The main step is to prove by induction on ${\boldsymbol N}$ that

$$A(N) \quad \begin{cases} & \text{ If } b_0, b_1, \dots, b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ & \mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \\ & \text{ is full over } \mathbb{C}\langle x_1, \dots, x_n \rangle, \text{ then the only projection} \\ & p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{cases}$$

• $\delta^{\star}(X_1,\ldots,X_n) = n$ tells us that there is a projection $q \in M_N(\mathcal{M}_0)$ such that

 $(\operatorname{tr}_N \circ \tau^{(N)})(q) \ge (\operatorname{tr}_N \circ \tau^{(N)})(p)$

and such that, if we put $ilde{p}:= au^{(N)}(p)$ and $ilde{q}:= au^{(N)}(q),$

$$\tilde{p}b_j\tilde{q}=0$$
 for $j=0,1,\ldots,n.$

- **2** Fullness of **P** gives that $\operatorname{rank}(\tilde{p}) + \operatorname{rank}(\tilde{q}) \leq N$.
- Use this to construct a full matrix $\mathbf{P}' \in M_{N-1}(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ and a projection $p' \in M_{N-1}(\mathcal{M}_0)$ such that $\mathbf{P}'(X)p' = 0$.

Consider a tuple (X_1, \ldots, X_n) of selfadjoint operators in \mathcal{M} .

Consider a tuple (X_1, \ldots, X_n) of selfadjoint operators in \mathcal{M} .

If $\delta^{\star}(X_1, \ldots, X_n) = n$, then (X_1, \ldots, X_n) realizes the free field inside \mathcal{A} .

Consider a tuple (X_1, \ldots, X_n) of selfadjoint operators in \mathcal{M} .

If $\delta^{\star}(X_1, \ldots, X_n) = n$, then (X_1, \ldots, X_n) realizes the free field inside \mathcal{A} .

Can we go backwards? Can we even characterize this situation?

Consider a tuple (X_1, \ldots, X_n) of selfadjoint operators in \mathcal{M} .

If $\delta^{\star}(X_1, \ldots, X_n) = n$, then (X_1, \ldots, X_n) realizes the free field inside \mathcal{A} .

Can we go backwards? Can we even characterize this situation?

Definition (Connes, Shlyakhtenko (2005))

$$\Delta(X_1,\ldots,X_n) := n - \dim_{\mathcal{M} \otimes \mathcal{M}^{\mathrm{op}}} \overline{\left\{ (T_1,\ldots,T_n) \in \mathcal{F}(L^2(\mathcal{M}))^n \mid \sum_{j=1}^n [T_j,JX_jJ] = 0 \right\}}^{n}$$

Consider a tuple (X_1, \ldots, X_n) of selfadjoint operators in \mathcal{M} .

If $\delta^{\star}(X_1, \ldots, X_n) = n$, then (X_1, \ldots, X_n) realizes the free field inside \mathcal{A} .

Can we go backwards? Can we even characterize this situation?

Definition (Connes, Shlyakhtenko (2005))

$$\Delta(X_1,\ldots,X_n) := n - \dim_{\mathcal{M} \otimes \mathcal{M}^{\mathrm{op}}} \overline{\left\{ (T_1,\ldots,T_n) \in \mathcal{F}(L^2(\mathcal{M}))^n \mid \sum_{j=1}^n [T_j,JX_jJ] = 0 \right\}}^{n}$$

Theorem (M., Speicher, Yin (2018)) If (X_1, \ldots, X_n) realizes the free field inside A, then $\Delta(X_1, \ldots, X_n) = n$.

Consider a tuple (X_1, \ldots, X_n) of selfadjoint operators in \mathcal{M} .

If $\delta^{\star}(X_1, \ldots, X_n) = n$, then (X_1, \ldots, X_n) realizes the free field inside \mathcal{A} .

Can we go backwards? Can we even characterize this situation?

Definition (Connes, Shlyakhtenko (2005))

$$\Delta(X_1,\ldots,X_n) := n - \dim_{\mathcal{M} \otimes \mathcal{M}^{\mathrm{op}}} \overline{\left\{ (T_1,\ldots,T_n) \in \mathcal{F}(L^2(\mathcal{M}))^n \mid \sum_{j=1}^n [T_j,JX_jJ] = 0 \right\}}^{n}$$

Theorem (M., Speicher, Yin (2018)) If (X_1, \ldots, X_n) realizes the free field inside \mathcal{A} , then $\Delta(X_1, \ldots, X_n) = n$.

Thank you!