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Noncommutative probability spaces

De�nition

A noncommutative probability space (A, φ) consists of

a complex algebra A with unit 1A and

a linear functional φ : A → C with φ(1A) = 1 (expectation).

Elements X ∈ A are called noncommutative random variables.

De�nition

A noncommutative probability space (A, φ) is called

C∗-probability space if
I A is a unital C∗-algebra and
I φ is a state on A.

tracial W ∗-probability space, if
I A is a von Neumann algebra and
I φ is a faithful normal tracial state on A.
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Noncommutative distributions

De�nition (�combinatorial distribution�)

Let (A, φ) be a noncommutative probability space. For any given family

X = (Xi)i∈I of noncommutative random variables, we call

µX : C〈xi | i ∈ I〉 → C, xi1 · · ·xik 7→ φ(Xi1 · · ·Xik)

the (joint) noncommutative distribution of X.

De�nition (�analytic distribution�)

Let (A, φ) be a C∗-probability space. For any given X = X∗ ∈ A, the
noncommutative distribution of X can be identi�ed with the unique Borel

probability measure µX on the real line R that satis�es

φ(Xk) =

∫
R
tk dµX(t) for all integers k ≥ 0.
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�Atoms� of noncommutative distributions

Let (M, τ) be a tracial W ∗-probability space and let (X1, . . . , Xn) be a

tuple of selfadjoint operators inM.

Noncommutative distribution µX1,...,Xn

(X1, . . . , Xn) Y := f(X1, . . . , Xn)

A generic regularity question

Consider the analytic distribution µY of Y = f(X1, . . . , Xn) for a given a

selfadjoint �noncommutative test function� f . Under what conditions on
(X1, . . . , Xn) can we understand the atomic part of µY ?
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Some classes of �noncommutative test functions�

1 Noncommutative polynomials, i.e., expressions of the form

P = a0 +
d∑

k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in formal non-commuting indeterminates x1, . . . , xn; we denote the

unital complex algebra consisting of all noncommutative polynomials

by C〈x1, . . . , xn〉.
2 Matrices of noncommutative polynomials, i.e., elements P in

MN (C〈x1, . . . , xn〉) for an arbitrary N ∈ N.
3 A�ne linear pencils, i.e., matrices of noncommutative polynomials

that are of the particular form

P = b0 + b1x1 + · · ·+ bnxn

with scalar matrices b0, b1, . . . , bn of appropriate size.
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The strong Atiyah property

De�nition (Shlyakhtenko, Skoufranis (2015))

We say that X = (X1, . . . , Xn) has the strong Atiyah property if

rank(P(X)) ∈ [0,∞) ∩ Z for each P ∈MN (C〈x1, . . . , xn〉).

Reminder

rank(P(X)) := N − (TrN ◦τ (N))(pker(P(X))),

where

TrN : MN (C)→ C, (aij)
N
i,j=1 7→

N∑
i=1

aii,

τ (N) : MN (M)→MN (C),
(
Yij
)N
i,j=1

7→
(
τ(Yij)

)N
i,j=1

,

and pker(P(X)) ∈MN (M) is the orthogonal projection onto the kernel

ker(P(X)) of the operator P(X).
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Results about atoms I

Theorem (Shlyakhtenko, Skoufranis (2015))

Suppose that

the operators X1, . . . , Xn are freely independent and

the individual analytic distributions µX1 , . . . , µXn are all non-atomic,

then the tuple X = (X1, . . . , Xn) has the strong Atiyah property.

Facts

If (X1, . . . , Xn) has the strong Atiyah property, then the following holds:

For every selfadjoint P ∈MN (C〈x1, . . . , xn〉), the measure of each

atom in the analytic distribution µY of the selfadjoint operator

Y = P(X1, . . . , Xn) is an integer multiple of 1
N .

In particular, if P ∈ C〈x1, . . . , xn〉 is a non-constant selfadjoint

polynomial, then the analytic distribution µY of the selfadjoint

operator Y = P (X1, . . . , Xn) cannot have atoms.
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Noncommutative derivatives

Consider again the ∗-algebra C〈x1, . . . , xn〉 of noncommutative

polynomials in formal selfadjoint variables x1, . . . , xn.

De�nition

The noncommutative derivatives are the linear mappings

∂1, . . . , ∂n : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

which are uniquely determined by the two conditions

∂j(P1P2) = (∂jP1) · P2 + P1 · (∂jP2) for all P1, P2 ∈ C〈x1, . . . , xn〉,
∂jxi = δi,j1⊗ 1 for i, j = 1, . . . , n.

C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉 becomes a C〈x1, . . . , xn〉-bimodule via

P1 · (Q1 ⊗Q2) · P2 := (P1Q1)⊗ (Q2P2).
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Conjugate variables and free Fisher information

Let (M, τ) be a tracial W ∗-probability space and consider any selfadjoint

operators X1, . . . , Xn ∈M; we putM0 := vN(X1, . . . , Xn).

De�nition (Voiculescu (1998))

If ξ1, . . . , ξn ∈ L2(M0, τ) are such that for all P ∈ C〈x1, . . . , xn〉

(τ ⊗ τ)((∂jP )(X1, . . . , Xn)) = τ(ξjP (X1, . . . , Xn)), j = 1, . . . , n,

then (ξ1, . . . , ξn) is called the conjugate system for (X1, . . . , Xn).

De�nition (Voiculescu (1998))

The (non-microstates) free Fisher information is de�ned by

Φ∗(X1, . . . , Xn) :=


n∑

j=1

‖ξj‖22,
if a conjugate system (ξ1, . . . , ξn)
for (X1, . . . , Xn) exists

∞, otherwise
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A useful variant of the free entropy dimension

Suppose that S1, . . . , Sn are freely independent semicircular elements that

are also free from {X1, . . . , Xn}, then (X1 +
√
tSn, . . . , Xn +

√
tSn)

admits a conjugate system for each t > 0. More precisely, we have

n2

C2 + nt
≤ Φ∗(X1 +

√
tS1, . . . , Xn +

√
tSn) ≤ n

t
for all t > 0,

with C2 := τ(X2
1 + · · ·+X2

n).

De�nition (Connes, Shlyakhtenko (2005))

δ?(X1, . . . , Xn) := n− lim inf
t↘0

tΦ∗(X1 +
√
tS1, . . . , Xn +

√
tSn)

We always have that δ?(X1, . . . , Xn) ∈ [0, n].

Philosophy

If δ?(X1, . . . , Xn) = n, then µX1,...,Xn has no �atomic part�.
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Results about atoms II

Theorem (Charlesworth, Shlyakhtenko, '16; M., Speicher, Weber, '17)

Suppose that δ?(X1, . . . , Xn) = n. Let P ∈ C〈x1, . . . , xn〉 be a selfadjoint

non-constant noncommutative polynomial and consider the selfadjoint

operator

Y = P (X1, . . . , Xn).

Then the analytic distribution µY of Y does not have atoms.

Questions

1 Does δ?(X1, . . . ,Xn) = n imply that (X1, . . . , Xn) has the strong

Atiyah property?

2 Can we exclude atoms not only for non-constant noncommutative

polynomials but also for operators that are noncommutative rational

expressions in X1, . . . , Xn?

What actually does �non-constant� mean in this case?
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Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.

Tobias Mai (Saarland University) The free �eld meets free probability March 5, 2019 12 / 19



Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.

Tobias Mai (Saarland University) The free �eld meets free probability March 5, 2019 12 / 19



Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.

Tobias Mai (Saarland University) The free �eld meets free probability March 5, 2019 12 / 19



Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.

Tobias Mai (Saarland University) The free �eld meets free probability March 5, 2019 12 / 19



Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.

Tobias Mai (Saarland University) The free �eld meets free probability March 5, 2019 12 / 19



Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.

Tobias Mai (Saarland University) The free �eld meets free probability March 5, 2019 12 / 19



Noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.

Tobias Mai (Saarland University) The free �eld meets free probability March 5, 2019 12 / 19



From rational functions to matrices of polynomials

De�nition

Let Q ∈MN (C〈x1, . . . , xn〉) be given.

The (inner) rank of Q, denoted by ρ(Q), is the least integer k ≥ 1 for

which Q can be written as Q = R1R2 with some rectangular matrices

R1 ∈MN×k(C〈x1, . . . , xn〉) and R2 ∈Mk×N (C〈x1, . . . , xn〉).

We call Q full if it has full rank, i.e., if ρ(Q) = N .

Facts

Q full ⇐⇒ Q invertible in MN (C (<x1, . . . , xn )>)

Every noncommutative rational function r ∈ C (<x1, . . . , xn )> admits a

linear representation, i.e., it can be written as r = uQ−1v with a full

a�ne linear pencil Q ∈MN (C〈x1, . . . , xn〉), and scalar vectors u and

v of appropriate size.
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Evaluations of noncommutative rational functions I

Trivial facts

Let A be a unital algebra and consider X1, . . . , Xn ∈ A. There is a unital

homomorphism

evX : C〈x1, . . . , xn〉 → A

that is uniquely determined by the condition that evX(xi) = Xi for

i = 1, . . . , n. The latter extends naturally to a unital homomorphism

ev
(N)
X : MN (C〈x1, . . . , xn〉)→MN (A), (Pij)

N
i,j=1 7→ (evX(Pij))

N
i,j=1.

This de�nes evaluation of (matrix-valued) noncommutative polynomials

and of a�ne linear pencils, in particular. Rational functions are more subtle.

Challenging facts

Not every rational expression can be evaluated everywhere.

Two rational expressions representing the same rational function need

not to give the same value under evaluation.
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Evaluations of noncommutative rational functions II

Let (M, τ) be a tracial W ∗-probability space and let A be the algebra of
unbounded operators a�liated toM.

De�nition

For a linear representation ρ = (u,Q, v) (of any rational function), we put

domA(ρ) :=
{
X ∈ An

∣∣ Q(X) invertible in MN (A)
}
.

Theorem

1 Suppose that ρ1 = (u1,Q1, v1) and ρ2 = (u2,Q2, v2) are two linear
representations of the same noncommutative rational function. Then

X ∈ domA(ρ1) ∩ domA(ρ2) =⇒ u1Q1(X)−1v1 = u2Q2(X)−1v2.

2 Every r ∈ C (<x1, . . . , xn )> admits an evaluation r(X) = EvX(r) on

domA(r) :=
⋃{

domA(ρ)
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The key criterion

Let A be the ∗-algebra of all unbounded linear operators a�liated toM.

Theorem (M., Speicher, Yin (2018))

For every given X = (X1, . . . , Xn) inMn, the following statements are

equivalent:

1 For any N ∈ N and every a�ne linear pencil P ∈MN (C 〈x1, . . . , xn〉)
we have: if P is full, then P(X) ∈MN (A) is invertible.

2 For any N ∈ N and every P ∈MN (C 〈x1, . . . , xn〉) we have: if P is

full, then P(X) ∈MN (A) is invertible.

3 For any N ∈ N and P ∈MN (C 〈x1, . . . , xn〉) we have:

rank(P(X)) = ρ(P).

4 We have X ∈ domA(r) for each r ∈ C (<x1, . . . , xn )> and r 7→ EvX(r)
induces an injective homomorphism EvX : C (<x1, . . . , xn )>→ A that

extends the evaluation map evX : C 〈x1, . . . , xn〉 → A.
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Results about atoms III

Theorem (M., Speicher, Yin (2018))

If δ?(X1, . . . , Xn) = n, then the equivalent statements of the previous

theorem hold. In particular, we have the following:

1 X = (X1, . . . , Xn) has the strong Atiyah property. In fact,

rank(P(X)) = ρ(P) for all P ∈MN (C〈x1, . . . , xn〉).

2 For every selfadjoint P ∈MN (C〈x1, . . . , xn〉), the operator

Y := P(X1, . . . , Xn) has atoms precisely at the points in the set{
λ ∈ C | P− λ1N ∈MN (C〈x1, . . . , xn〉) is not full

}
with size µY({λ}) = 1− 1

N ρ(P− λ1N ).

3 For every non-constant selfadjoint r ∈ C (<x1, . . . , xn )>, the evaluation

r(X) is an a�liated unbounded operator whose analytic distribution

has no atoms.
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Sketch of proof

The main step is to prove by induction on N that

A(N)



If b0, b1, . . . , bn are matrices in MN (C) for which

P = b0 + b1x1 + · · ·+ bnxn ∈MN (C〈x1, . . . , xn〉)

is full over C〈x1, . . . , xn〉, then the only projection

p ∈MN (M0) that satis�es P (X)p = 0 is p = 0.

.

1 δ?(X1, . . . , Xn) = n tells us that there is a projection q ∈MN (M0)
such that

(trN ◦τ (N))(q) ≥ (trN ◦τ (N))(p)

and such that, if we put p̃ := τ (N)(p) and q̃ := τ (N)(q),

p̃bj q̃ = 0 for j = 0, 1, . . . , n.

2 Fullness of P gives that rank(p̃) + rank(q̃) ≤ N .
3 Use this to construct a full matrix P′ ∈MN−1(C〈x1, . . . , xn〉) and a

projection p′ ∈MN−1(M0) such that P′(X)p′ = 0.
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Operators realizing the free �eld

Consider a tuple (X1, . . . , Xn) of selfadjoint operators inM.

If δ?(X1, . . . , Xn) = n, then (X1, . . . , Xn) realizes the free �eld inside A.

Can we go backwards? Can we even characterize this situation?

De�nition (Connes, Shlyakhtenko (2005))

∆(X1, . . . , Xn) := n−dimM⊗Mop

{
(T1, . . . , Tn) ∈ F(L2(M))n

∣∣∣ n∑
j=1

[Tj , JXjJ ] = 0
}HS

Theorem (M., Speicher, Yin (2018))

If (X1, . . . , Xn) realizes the free �eld inside A, then ∆(X1, . . . , Xn) = n.

Thank you!
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